Обобщения такого рода, связанные с теорией, действительной в определенной области, и расширение сферы ее применимости на еще большую область делались в геометрии неоднократно. Вспомним создание неевклидовой геометрии. «Если бы вы спросили Николая Лобачевского о геометрии его молодости», то есть геометрии конца XVIII века, то «он, вероятно, перечислил бы пять постулатов Евклида, — говорит Адамс. — Если бы вы спросили его позже, когда он стал великим ученым, то он мог бы сказать, что существует пять постулатов, но, может быть, они не нужны нам все».[286] В частности, он выделил бы пятый постулат Евклида о том, что параллельные линии никогда не пересекаются, как необязательный. В конце концов, именно Лобачевский понял, что, исключив постулат о параллельных, он создал совершенно новую геометрию, которую мы называем гиперболической геометрией. Но из того, что параллельные линии не пересекаются на плоскости, то есть в области, где работает евклидова геометрия, вовсе не следует, что это же будет иметь место на поверхности сферы. Например, мы знаем, что все меридианы на глобусе сходятся на северном и южном полюсах. Аналогично, хотя сумма углов треугольника, нарисованного на плоскости, всегда равна 180 градусам, на поверхности сферы сумма этих углов всегда больше 180 градусов, а на поверхности седла их сумма меньше 180 градусов.
Лобачевский опубликовал свои спорные идеи по неевклидовой геометрии в 1829 году, и они были похоронены в малоизвестном русском журнале «Казанский вестник». Несколько лет спустя венгерский математик Янош Бойяи опубликовал свой собственный трактат по неевклидовой геометрии, но работа, к сожалению, стала приложением к книге, написанной его отцом, математиком Фаркашем Бойяи. Примерно в то же время Гаусс разрабатывает аналогичные идеи в области дифференциальной геометрии. Он сразу понял, что эти новые понятия криволинейных пространств и «внутренней геометрии» переплетаются с физикой. «Геометрию следует относить не к арифметике, которая является чисто
Таким образом, пионеры науки, подобные Лобачевскому, Бойяи и Гауссу, не отбросили все, что было сделано до них, а просто открыли дверь новым возможностям. Их новаторские работы способствовали созданию более экспансивной геометрии, так как ее принципы не ограничивались плоскостью, а могли быть применимы ко всем криволинейным поверхностям и пространствам. Хотя элементы евклидовой геометрии по-прежнему сохраняются в этой расширенной, более общей геометрии. Например, если вы берете небольшой участок земной поверхности, скажем, на Манхэттене, то улицы и проспекты можно считать параллельными и перпендикулярными для всех практических целей. Евклидова геометрия достоверно описывает ограниченную область, где эффектами кривизны можно пренебречь, но не работает, если вы смотрите на планету в целом. Можно также рассмотреть треугольник, нарисованный на воздушном шаре. Когда шар относительно небольшой, то сумма углов треугольника больше 180 градусов. Но если мы будем раздувать воздушный шар, то радиус кривизны (r) будет становиться все больше и больше, а сама кривизна (равная 1/r2) — все меньше и меньше. При приближении r к бесконечности, кривизна будет стремиться к нулю, а сумма углов треугольника в пределе будет точно равна 180 градусам. Как выразился Адамс, «это именно та ситуация на ровной плоскости, в которой евклидова геометрия является чемпионом. Она работает довольно хорошо и на сфере с небольшой кривизной, но, если вы надуваете воздушный шар и кривизна сферы становится все меньше и меньше, то соответствие евклидовой геометрии становится все лучше и лучше. Таким образом, мы видим, что евклидова геометрия действительно является только частным эпизодом более общего сюжета, когда радиус кривизны является бесконечным, сумма углов треугольника составляет 180 градусов и все постулаты евклидовой геометрии применимы».[288]