3. Некоторые методические приемы в проведении интегрированного урока.Бинарный урок – это творчество двух учителей. Поэтому нужно четко выделять границы проведения фрагментов урока одним учителем и другим, элементы урока должны быть подчинены единым учебным, воспитательным и развивающим целям. Для проведения бинарных уроков лучше выбирать итоговые уроки по обобщению изученных тем или уроки исследовательского характера, подготавливающие учащихся к новым понятиям. Учителя должны заранее подобрать общие темы, спланировать интегрированный курс.
Актуализацию опорных знанийпредлагается проводить в форме тестов. Удобнее 1-ю часть тестов посвятить повторению теории по математике (правила, теоремы, понятия), 2-ю часть – по информатике (понятие алгоритма, базовые структуры).
Можно объединить вопросы тестов и предложить кроссворд.
Такой вид работы, как самопроверка, не всегда интересен, но необходим (известно, что свои ошибки найти трудно). На уроке самопроверку можно организовать с помощью программы алгоритма прямой и обратной задачи.
Групповая работана уроке создает условия для взаимоконтроля и взаимопомощи, развивает чувство коллективной ответственности за выполнение задания. Такая работа направлена на отработку умений и навыков. Два учителя на уроке позволяют сэкономить время на контроль знаний, кроме того, в настоящее время за компьютерами может находиться только половина класса, и очень выгодно второму учителю провести работу с остальными детьми по решению задач, а затем группы обмениваются результатами теоретических и практических заданий, делают выводы.
4. Результаты эксперимента.Эти соображения можно проиллюстрировать на примере урока в 11-м классе, проведенного авторами статьи. Тема урока “Вычисление площади криволинейной трапеции. Интеграл”. К данному уроку ученики уже усвоили вычисление площади криволинейной трапеции с помощью первообразной на уроках алгебры, и на уроках информатики познакомились с приближенными методами вычисления площади фигуры с помощью формулы левых прямоугольников. В начале урока была рассмотрена задача вычисления площади криволинейной трапеции, ограниченной функцией, первообразная которой неизвестна. Учащиеся предложили приближенный метод вычисления и подробно описали структуру алгоритма.
После этого им была предложена практическая исследовательская работа, в которой необходимо было вычислить площадь фигуры, ограниченной линейной функцией, несколькими способами. Класс делится на две группы. Первая группа с учителем математики выполняет решение геометрическим способом и с помощью первообразной, вторая – с учителем информатики - по составленной программе на ЭВМ получает приближенные значения площади при разбиении отрезка на
При такой групповой работе появляется возможность быстрого контроля над выполнением задания учащимися. Две группы сравнивают результаты и, убедившись в правильности ответов, находят абсолютную погрешность при каждом разбиении отрезка на 10, 100, 1000 равных частей, и опытном путем убеждаются в том, что при большем разбиении отрезка площадь ступенчатой фигуры приближается к площади данной трапеции.
Аналитическим путем ученики находят, что . Проведенная таким образом практическая работа подготавливает к изучению нового понятия – интеграла. Ведется объяснение нового материала, учащиеся знакомятся с формулой Ньютона-Лейбница и ее применением, после этого предлагается вычислить интеграл вида . Опираясь на геометрический смысл интеграла, учащиеся используют два способа: приближенный (формула левых прямоугольников) и точный (половина площади круга с радиусом а). Далее следует объяснение учителя информатики о методе вычислений с использованием формулы трапеций, учащиеся разрабатывают алгоритм и практически устанавливают, что этот метод допускает наименьшую погрешность. На этом урок заканчивается.
Подведем итоги: за один час отработаны приближенные методы вычисления площади криволинейной трапеции, проведена практическая исследовательская работа, в результате которой проведен индивидуальный контроль знаний по программированию, введено понятие интеграла, расширяется кругозор учащихся. Создается проблемная ситуация вычисления интеграла исходя из его геометрического смысла (не применяя формулу Ньютона-Лейбница) и определения точности приближенного метода трапеций опытным путем.
Заключительная часть эксперимента – контроль знаний учащихся и обработка результатов письменного опроса. Получили: 83% учащихся усвоили понятие интеграла и могли выполнять предложенные им задания, 100% учащихся показали хорошие и отличные результаты при составлении и реализации программы приближенных вычислений в среде программирования ТР 7.0.
Эффективность урока повышается за счет того, что все ученики были включены в работу полностью. До конца урока не угасает интерес к изучаемой теме.