Читаем "Теорія та методика навчання математики, фізики, інформатики. Том-1" полностью

Габович И.Г. Алгоритмический подход к решению геометрических задач. – К.: Высшая школа, 1989. – 160 с.

Погорелов А.В. Геометрия: Учеб. для 7-11 кл. сред. шк. – 3-е изд. – М.: Просвещение, 1992. – 383 с.

Слєпкань З.І. Методика навчання математики. – К.: Зодіак-ЕКО, 2000. – 512 с.

Тарасенкова Н.А. Змістовно-графічні інтерпретації планіметричних задач як засіб навчання // Вісник Черкаського університету. – Вип. 4. – Черкаси, 1997. – С. 142.

БИНАРНЫЕ УРОКИ

ПО МАТЕМАТИКЕ И ИНФОРМАТИКЕ

Ю.Е. Коляда 1, Е.В. Лунина 2, Л.Д. Шашенкова 2

1г. Мариуполь, Приазовский государственный технический

университет

2г. Мариуполь, Государственная гимназия №1

Для нашего времени характерна интеграция наук, стремление получить как можно более точное представление об общей картине мира. Эти идеи находят отражение в концепции современного школьного образования. Но решить такую задачу невозможно в рамках одного учебного предмета. Поэтому в теории и практике обучения наблюдается тенденция к интеграции учебных дисциплин, которая позволяет учащимся достигать межпредметных обобщений и приближается к пониманию общей картины мира.

Хорошо известно, что тенденция к синтезу знаний должна постоянно усиливаться в будущем. Это особенно важно для преподавания математики, методы которой используются во многих областях знаний и человеческой деятельности. Интегрированные уроки математики с другими предметами обладают ярко выраженной прикладной направленностью и вызывают познавательный интерес учащихся.

1. Актуальность интегрированного подхода в процессе обучения математике и информатике.

Интеграция [лат. Integratio– восстановление, восполнение, integer– целый] – объединение в целое каких-либо частей элементов. (Современный словарь иностранных слов).

Учитель в своей работе постоянно сталкивается с проблемами: как научить учащихся логически мыслить, искать аналогии, аргументировано объяснять построение того или иного алгоритма, а главное, как сделать учебный процесс интересным. Для решения этих проблем нужны новые технологии, средства и методы обучения. Одной из таких технологий является проведение бинарных уроков, для которых есть ряд причин:

решение задач, подготавливающих к введению нового понятия,

закрепление приобретенных навыков путем составления программ к математическим задачам,

воспитание устойчивого интереса к предметам,

систематизация и обобщение полученных знаний.

Такие интегрированные приемы нельзя проводить на каждом уроке математики, т.к. для этого нет соответствующего количества компьютерной техники, нет качественных обучающих программ по предмету.

2. Межпредметные связи информатики и математики

Информатика и математика имеют тесные терминологические связи, причем информатика является примером применения абстрактного математического аппарата на практике. Такой подход не умаляет значение информатики в глазах учеников, а наоборот – помогает осуществлять связь информатики с другими предметами. У ребят возникает желание решить “твердые орешки” классической математики при помощи ЭВМ, тем самым создаются условия для творческого развития учеников. Математическое моделирование с применением вычислительной техники является элементом алгоритмической культуры учеников.

Многие темы школьного курса математики и информатики взаимосвязаны, и это можно использовать на интегрированных уроках: для иллюстрации базовой структуры алгоритма – ветвления, традиционно решаем задачи: нахождение минимального и максимального для данных чисел; алгоритм Евклида; задачи на нахождение НОД, НОК – примеры для иллюстрации циклических алгоритмов. И, наоборот, при изучении некоторых тем по информатике можно вводить математические понятия, которые ребята по математике еще не изучали. Например, изучая тему «Графический редактор “Графин-1”» в 5-м классе вводим понятия координатной плоскости, симметрии, отображение фигур.

В старших классах диапазон применения информатики при изучении математики становится шире. Использование программ “GRAN 1” и “PAINT” помогает учащимся при изучении стереометрии (построение сечений, изучении свойств параллельных прямых и плоскостей и т.д.). По алгебре и началам анализа составление программ на применение численных методов решения задач позволяют разгрузить теоретический материал и сделать его более доступным и наглядным.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное