CЕ = 1/3 АС; CЕ = ЕК = АК;
А 1В 1 = 1/5 АВ CD = 1/3 BС; CD = DN = NB;
В 1С 1 = 1/5 ВС BM = 1/3 AB; BM = ML = LA.
А 1С 1 = 1/5 АС
Таким образом, в любом треугольнике, кроме медиан есть еще и терцианы.
НЕКОТОРЫЕ ОСОБЕННОСТИ И ПРОБЛЕМЫ
АКТИВИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
АБИТУРИЕНТОВ ПРИ ИЗУЧЕНИИ КУРСА
«ТРИГОНОМЕТРИЯ»
С.Н. Латынин 1, И.В. Латынина 2
1г. Донецк, Донецкий экономико-гуманитарный институт
2г. Донецк, Донецкий политехнический техникум
Содержание и методика обучения математике претерпевают закономерный процесс периодического обновления и непрерывного совершенствования. Роль фундаментальных знаний в педагогическом плане была всегда велика, но в полной мере начинает осознаваться в наше время, когда особенно быстро растет объем новых знаний о природе. Только фундаментальное образование способно выработать современное научное мышление, позволяющее успешно решать любые научные и технические проблемы, выдвигаемые практикой. В современных условиях, и в исследовательской лаборатории, и на производстве, лучше ориентируется и оказывается более эффективным работник с высоким уровнем общей подготовки.
При составлении учебного пособия «Тригонометрические неравенства. Практическое руководство для школьников и абитуриентов» авторы исходили: во-первых, из того, что «Тригонометрические неравенства» – это один из разделов тригонометрии, который меньше всего раскрыт в обучающей литературе и, во-вторых, сокращение часов выделяемых на аудиторные занятия заставляет по-новому взглянуть на проблему организации самостоятельной работы учащихся. При написании учебного пособия авторы опирались на психологические и педагогические принципы познавательной деятельности в процессе обучения. Мы исходили из того, что «слияние проблемы содержания и методов обучения с проблемой передачи и формирования способа мышления есть насущная необходимость наших дней». Обучение не должно ограничиваться передачей учащимся определенной суммы знаний, оно должно включать и передачу самого способа мышления. Педагогические и дидактические принципы, принятые за основу, призваны обеспечить реализацию процесса познавательной деятельности при максимальной активности учащихся. Так как выработка оптимального соотношения чувствительного и рационального познания представляет собой сложную задачу, то информация, извлекаемая из данного учебного пособия, переплетается с указаниями методологического характера: как следует подходить к изучению материала того или иного раздела, чтобы добиться оптимальных результатов с минимальной затратой времени. Наша цель не в том, чтобы дать им энциклопедические знания, а в том, чтобы научить учащихся разбираться в огромном потоке информации, анализировать и преломлять ее для своих практических целей.
Теоретический материал учебного пособия изложен в первых двух разделах, он не содержит ничего лишнего и ориентирован исключительно на формирование навыков быстрого решения тригонометрических неравенств. Одна из целей книги – довести последовательность основных действий учащихся при решении неравенств до автоматизма. Работа с пособием предполагает последовательный разбор решений всех неравенств, от простейших до самых сложных. Примечания по тексту должны ориентировать школьников на повторение и восстановление в памяти разобранного ранее теоретического материала (или решенных задач), на контроль правильности их рассуждений. Мы не ставим своей задачей использование творческих способностей школьников, а требуем, чтобы у них были определенные математические навыки, знания и умение их применять.