Поскольку всякое вещество построено из атомов, а атомы состоят из положительно заряженных ядер и отрицательно заряженных электронных оболочек, постольку всякая заряженная частица, пролетающая через вещество, должна взаимодействовать с электронами и ядрами, вызывать так называемую ионизацию
вещества, а в «благоприятных» случаях и ядерную реакцию. Процесс ионизации вещества состоит в том, что в результате действия таких частиц электроны срываются с нейтральных атомов, причем последние превращаются в положительные ионы, то есть атомы, лишенные одного или нескольких электронов. Оторвавшиеся электроны или «налипают» в дальнейшем на другие нейтральные атомы, превращая их в отрицательные ионы (атомы с избыточными электронами), или же остаются свободными.Процесс ионизации требует затраты энергии от нескольких десятков тысяч до нескольких сотен тысяч калорий на каждый грамм вещества. Значительно бóльшую энергию необходимо затратить для осуществления ядерной реакции положительно заряженной частице, приближающейся к одноименно заряженному атомному ядру, на преодоление действующих между ними электрических сил отталкивания.
Происходящие при этом процессы схематично изображены на рис. 12. Здесь сравниваются случаи перекатывания шара через барьер и приближения альфа-частицы к заряженному атомному ядру.
Если шар
Точно так же альфа-частица, летящая с небольшой скоростью, отталкивается от атомного ядра и летит обратно (рис. 12,
Чтобы могла произойти ядерная реакция, частица должна приблизиться к ядру на расстояние около одной миллиардной доли микрона[7]
, когда уже начинают действовать ядерные силы. Для этого частица должна обладать очень высокой кинетической энергией. Так, например, электрическая энергия отталкивания, которую необходимо преодолеть протону при приближении к другому протону, чтобы сказалось действие ядерных сил, составляет около 12 млрд.Величину энергии, которую необходимо затратить, чтобы частица могла проникнуть в ядро, часто называют энергетическим «барьером»
, окружающим ядро.Как показывают расчеты, ядерное взаимодействие возможно и тогда, когда относительная энергия сталкивающихся частиц ниже высоты барьера, однако в этом случае вероятность ядерной реакции мала. Такая частица, подходя к ядру, обычно отталкивается от него под влиянием электростатических сил. Лишь в редких случаях недостаточно быстрая частица проникает в ядро. В огромном большинстве случаев положительно заряженные частицы успевают израсходовать свою кинетическую энергию, замедляются и, захватив электроны, превращаются в нейтральные атомы.
Такое расходование кинетической энергии происходит по той причине, что заряженные частицы, проходя через вещество, взаимодействуют с электронами, вырывая их из атомов вещества, то есть производя ионизацию.
Ионизирующих столкновений происходит много. Поэтому общая потеря энергии на ионизацию за очень короткое время достигает большой величины. Применяемая для обстрела ядра быстролетящая альфа-частица обладает энергией порядка 5–6
Таким образом, при энергиях бомбардирующих частиц ниже высоты «барьера» ядерное взаимодействие почти совершенно отсутствует, а при энергиях бомбардирующих частиц выше «барьера» ядерное взаимодействие хотя и проявляется, но далеко не может восполнить затраты энергии на ионизацию. Поэтому для осуществления, например, упоминавшейся ядерной реакции взаимодействия ядра протона с атомом лития при обычных температурах необходимо бомбардировать литий специально ускоренными для этой цели протонами, как это было сделано в 1932 году в Англии и в СССР. Осуществление этой ядерной реакции было первым экспериментальным подтверждением закона взаимосвязи массы и энергии.