Так как в данном случае подавляющая часть ускоренных протонов растрачивает свою энергию на ионизацию атомов лития и поэтому не принимает участия в ядерной реакции, то освобождающаяся при этих опытах ядерная энергия оказывается гораздо меньше затрат энергии на ускорение пучка протонов.
Положение существенно меняется при сверхвысоких температурах порядка миллионов градусов. При таких температурах атомы самых легких элементов — водорода, гелия, лития — оказываются полностью ионизированными, то есть среда, содержащая такие легкие элементы, состоит из атомных ядер и свободных электронов, находящихся в тепловом движении. В этих условиях заряженные частицы не расходуют своей энергии на ионизацию. Сама же энергия частиц при сверхвысоких температурах резко возрастает. Так, энергия теплового движения при температуре в 1 млн. градусов достигает 3 млн.
Совокупность указанных обстоятельств создает при сверхвысоких температурах необходимые условия для проведения термоядерных реакций в больших масштабах. При этом, чем более тяжелые элементы участвуют в реакции, тем более высокая требуется температура и тем труднее ее поддерживать. Это объясняется тем, что «барьер», который необходимо преодолеть заряженной частице, чтобы проникнуть в ядро, повышается при возрастании заряда ядра и, следовательно, порядкового номера. Кроме того, для элементов с большими порядковыми номерами становится все труднее обеспечить полную ионизацию, отсутствие которой приводит к возникновению ионизационных потерь и понижению температуры.
Следует отметить, что понятие о термоядерных реакциях существовало в науке задолго до того, как последние были практически осуществлены. В 1936 году учеными была разработана теория, объяснившая происхождение энергии звезд и, в частности, Солнца сложным рядом термоядерных реакций с участием водорода, углерода, азота и кислорода, которые приводят в конечном счете к образованию гелия. По современным представлениям преобразование ядер водорода в ядра гелия (синтез одного ядра гелия из четырех ядер водорода) является основным источником энергии, излучаемой звездами и Солнцем. Для краткости нередко говорят об образовании из водорода гелия, подразумевая образование из ядер водорода ядер гелия.
Познакомимся с термоядерными реакциями, происходящими в недрах Солнца.
Далеко не каждый знает, что Солнце — тело не твердое и не жидкое, а газообразное. Солнце представляет собой гигантский огненный шар, состоящий наполовину из водорода. Так как водород является легчайшим из всех известных элементов, то при любых температурах движущиеся молекулы, атомы или ядра атомов водорода обладают наибольшими скоростями. В недрах Солнца царят огромное давление и колоссальная температура, достигающая приблизительно по новым данным 13 млн. градусов. Давление здесь столь огромно, что даже газообразный водород сжат в такой степени, что его плотность в 7 раз больше плотности свинца.
В таких условиях в недрах Солнца, как и в недрах звезд, происходят термоядерные реакции взаимодействия ядер атомов водорода с другими элементами. Приведем один из возможных циклов солнечных реакций (табл. 3).
Таблица 3
В недрах Солнца сначала к углероду 12 присоединяется ядро атома водорода — протон. В результате этой ядерной реакции получается азот 13. Затем неустойчивый азот 13 превращается в углерод 13, при этом выделяется атомная энергия в виде гамма-излучения и позитронов. Далее углерод 13 соединяется еще с одним протоном, в результате чего получается азот 14 (это — обычный азот, основная составная часть воздуха). Азот 14 соединяется с третьим протоном, образуется кислород 15, который является неустойчивым и превращается в азот 15 с выделением новой огромной порции энергии в виде гамма-излучения и позитронов. Азот 15 вступает в реакцию с четвертым протоном. Получается углерод 12 и гелий 4.
Итак, в результате всего цикла реакций образуется такое же ядро углерода 12, которое было израсходовано в начале цикла. Значит, в результате всего цикла реакций количество углерода не изменилось. Что же изменилось? В процессе цикла четыре протона постепенно соединились, образовав атом гелия, при этом выделилась колоссальная энергия в виде быстролетящих позитронов и гамма-лучей. Следовательно, под циклом можно подвести итоговую черту и написать суммарный результат цикла солнечных ядерных превращений, как это показало в приведенной таблице. Энергия, выделяющаяся при превращении протонов (или атомов водорода) в гелий, в несколько раз превышает энергию, получающуюся при расщеплении атомов урана или плутония.
Отдельные реакции указанного солнечного цикла имеют неодинаковую продолжительность. Весь цикл в целом занимает десятки миллионов лет. На Солнце такие процессы идут беспрерывно — одни атомные ядра участвуют в начале цикла, другие в это время уже завершают цикл и т. д. Поэтому на Солнце постоянно образуется гелий и выделяется энергия.