Можно отметить еще одну, третью сторону этого интересного открытия: оно касается двух нот, которые звучат
Среди звуков, которые мы слышим, есть такой сорт, который называется
(Такой шум может, например, вызвать топание ногой.) А
Тон может длиться сравнительно недолго, например когда мы ударяем по клавише фортепьяно, или неопределенно долго, когда, скажем, флейтист берет длинную ноту.
В чем состоит особенность музыкальной ноты с точки зрения давления воздуха? Музыкальный звук отличается от шума тем, что график его периодичен. Форма колебаний давления воздуха со временем пусть даже какая-то неправильная, но она должна повторяться снова и снова. Пример зависимости давления от времени для музыкального звука показан на приведенной выше фиг. 50.1.б.
Обычно музыканты, говоря о музыкальном тоне, определяют три его характеристики — громкость, высоту и «качество». «Громкость», как известно, определяется величиной изменения давления. «Высоте» соответствует период времени повторения основной формы давления («низкие» ноты имеют более длинный период, нежели «высокие»). А под «качеством» тона понимается разница, которую мы способны уловить между двумя нотами одинаковой громкости и высоты. Мы прекрасно различаем звучание гобоя, скрипки или сопрано, даже если высота издаваемых ими звуков кажется одинаковой. Здесь уже дело идет о структуре периодически повторяющейся формы.
Давайте кратко рассмотрим звук, производимый вибрирующей струной.
Если оттянуть струну, а затем отпустить ее, то последующее движение будет определяться волнами, которые мы возбудили. Эти волны, как вы знаете, пойдут в обоих направлениях по струне, а затем отразятся от ее концов. Так они будут бегать взад и вперед довольно долго. И сколь бы сложны ни были эти волны, они будут повторяться периодически снова и снова.
Период этих повторений равен просто времени T, которое требуется волне, чтобы пробежать дважды всю длину струны. Ведь это как раз то время, которое необходимо для того, чтобы любая волна, отразившись от каждого конца, вернулась в начальное положение и продолжала движение в первоначальном направлении. Время, необходимое для того, чтобы волна достигла конца струны в любом направлении, одинаково. Каждая точка струны после целого периода возвращается в свое исходное положение, затем опять отклоняется от него и снова, спустя период, возвращается, и т. д.
Возникающий при этом звук тоже должен повторять те же колебания; вот почему мы, тронув струну, получаем музыкальный звук.
§ 2. Ряд Фурье
В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне возникают различные собственные гармоники и что любое частное колебание, которое только возможно получить из начальных условий, можно рассматривать как составленную в надлежащей пропорции комбинацию нескольких одновременно осциллирующих собственных гармоник. Для струны мы нашли, что собственные гармоники имеют частоты ω0, 2ω0, 3ω0, .... Поэтому наиболее общее движение струны складывается из синусоидальных колебаний основной частоты ω0, затем второй гармоники 2ω0, затем третьей гармоники Зω0 и т. д. Основная гармоника повторяется через каждый период T1=2π/ω0, вторая гармоника — через каждый период T2=2π/2ω0; она повторяется