Читаем Том 1. Механика, излучение и теплота полностью

До сих пор мы говорили о движении струны. Однако звук, который представляет собой движение воздуха, вызванное движением струны, тоже должен состоять из тех же гармоник, хотя здесь мы уже не можем говорить о собственных гармониках воздуха. К тому же относительная сила различных гармоник в воздухе может быть совсем другой, чем в струне, особенно если струна «связана» с воздухом посредством «звучащей доски». Разные гармоники по-разному связаны с воздухом.

Если для музыкального тона функция f(t) представляет давление воздуха в зависимости от времени (скажем, такая, как на фиг. 50.1.б), то можно ожидать, что f(t) записывается в виде суммы некоторого числа простых гармонических функций от времени (подобных cosωt) для каждой из различных гармонических частот. Если период колебаний равен Т, то основная угловая частота будет ω=2π/Т, а следующие гармоники будут 2ω, 3ω и т. д.

Здесь появляется небольшое усложнение. Мы не вправе ожидать, что для каждой частоты начальные фазы обязательно будут равны друг другу. Поэтому нужно пользоваться функциями типа cos(ωt+φ). Вместо этого, однако, проще использовать для каждой частоты как синус, так и косинус. Напомним, что

(50.1)

а поскольку φ — постоянная, то любые синусоидальные колебания с частотой ω могут быть записаны в виде суммы членов, в один из которых входит sinωt, а в другой — cosωt.

Итак, мы приходим к заключению, что любая периодическая функция f(t) с периодом Т математически может быть записана в виде

(50.2)

где ω=2π/T, а a и b — числовые постоянные, указывающие, с каким весом каждая компонента колебания входит в общее колебание f(t). Для большей общности мы добавили в нашу формулу член с нулевой частотой а0, хотя обычно для музыкальных тонов он равен нулю. Это просто сдвиг средней величины звукового давления (т. е. сдвиг «нулевого» уровня). С этим членом наша формула верна для любого случая. Уравнение (50.2) схематически показано на фиг. 50.2.

Фиг. 50.2. Любая периодическая функция f(t) равна сумме простых гармонических функций.

Амплитуды гармонических функций аn и bn выбираются по специальному правилу. На рисунке они показаны только схематически без соблюдения масштаба. [Ряд (50.2) называется рядом Фурье для функций f(t).]

Мы сказали, что любую периодическую функцию можно написать в таком виде. Следует внести небольшую поправку и подчеркнуть, что в такой ряд можно разложить вообще любую звуковую волну или любую функцию, с которой мы сталкиваемся в физике. Математики, конечно, могут придумать такую функцию, что ее нельзя будет составить из простых гармонических (например, функцию, которая «заворачивает» назад, так что для некоторых величин t она имеет два значения!). Однако здесь нам не стоит беспокоиться о таких функциях.

<p><strong>§ 3. Качество и гармония</strong></p>

Теперь мы уже можем описать, чем определяется «качество» музыкального тона. Оно определяется относительным количеством различных гармоник, т. е. относительными величинами а и b. Тон, содержащий только первую гармонику, называется «чистым», а тон с несколькими сильными гармониками называется «богатым». Скрипка дает гармоники в одной пропорции, а гобой — в другой.

Можно «изготовить» различные музыкальные тоны, если подсоединить к громкоговорителю несколько «осцилляторов». (Осциллятор обычно дает приблизительно чистые простые гармонические колебания) В качестве частот осцилляторов мы выберем ω, 2ω, 3ω и т. д. Приделав к каждому осциллятору регулятор громкости, можно смешивать гармоники в любой желаемой пропорции и тем самым создавать звуки различного качества. Примерно так работает электрический орган. Клавиши выбирают частоту основного осциллятора, а педали контролируют относительную пропорцию различных гармоник. С помощью этих регуляторов можно заставить орган звучать как флейту, или как гобой, или как скрипку.

Интересно, что для получения такого «искусственного» звука нет никакой необходимости разделять осцилляторы на «синусные» и «косинусные» — для каждой частоты нам достаточно только одного осциллятора. Наше ухо не очень чувствительно к относительной фазе гармоник. Оно воспринимает «синусную» и «косинусную» части частоты в целом. Поэтому наш анализ более точен, чем это необходимо для объяснения субъективной стороны музыки. Однако реакция микрофона или другого физического инструмента все-таки зависит от фазы, и наш полный анализ для таких случаев просто необходим.

«Качество» разговорной речи определяется гласными звуками. Форма рта определяет частоты собственных гармоник колебаний звука в нем. Некоторые из этих гармоник возбуждаются звуковыми волнами от голосовых связок. Таким способом происходит усиление одних гармоник по сравнению с другими. Когда мы меняем форму рта, мы даем преимущество гармоникам разных частот над другими. Благодаря этому эффекту, например, имеется разница между звуком «о—о—о» и звуком «а—а—а».

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука