Читаем Том 12. Числа-основа гармонии. Музыка и математика полностью

Рассмотрим музыкальные произведения издалека. Мы увидим крупные структуры, которые будем обозначать заглавными латинскими буквами. Здесь в качестве структурных элементов композиции мы будем рассматривать повторяющиеся или изменяющиеся фрагменты произведения. Композицию, в которой полностью повторяется единственная группа, будем обозначать так:

Такие композиции обладают простой симметрией. Произведение, состоящее из двух полностью различных групп, напротив, не обладает какой-либо симметрией:

Существуют ли произведения, симметричные с формальной точки зрения? Да, такие произведения существуют, более того, они встречаются очень часто. Примером может служить скерцо («игра») — произведение, которое обычно является частью другого, более крупного произведения, например симфонии. В качестве примера можно привести скерцо из Девятой симфонии Бетховена или скерцо из Симфонии № 4 Чайковского. По своей сути скерцо имеет вид АВ. Иногда после исполнения второй части первая повторяется заново, и композиция принимает вид:

Это простейшая симметричная фигура. Части этой композиции могут повторяться и далее, образуя различные симметричные структуры:

Также существуют сложные формы, состоящие из трех частей, каждая из которых также делится на три части. В результате образуются более крупные симметричные структуры:

Некоторые короткие произведения, например вальс ор. 34 № 1 Фредерика Шопена (1810–1849), обладают еще более широкой симметрией:

Чем длиннее произведение, тем меньше вероятность наличия подобной симметрии. «Музыкальное приношение» Баха обладает формальной симметрией следующего вида:

Месса си минор Баха

Иоганн Себастьян Бах, самый изобретательный композитор всех времен, использовал в своих произведениях структуры, обладающие символическими и математическими свойствами. Его Месса си минор (Высокая месса) BWV 232, состоит из 27 частей, объединенных в четыре группы: Kyrie, Gloria, Credo и финальную, включающую в числе прочих части Sanctus, Hosanna, Benedictus и Agnus Dei. Композитор хотел изобразить Святую Троицу как в музыке, так и в числах.

Число 3 обозначает Святую Троицу. Общее число частей произведения (27), а также число частей в каждой группе (3 + 9 + 9 + 6) делится на три. Две центральных группы (Gloria и Credo) имеют симметричную структуру. Центр симметрии Gloria расположен в хоре Domine Deus («Господи Боже»). Центр симметрии Credo — в Crucifixus («Распятье»):

—Kyrie

 Kyrie eleison (№ 1).

 Christe eleison.

 Kyrie eleison (№ 2).

 —Gloria

 Gloria in excelsis Deo.

 Et in terra pax.

 Laudamus te.

 Gratias agimus tibi.

 Domine Deus. <—

 Qui tollis peccata mundi.

 Qui sedes ad dexteram Patris.

 Quoniam tu solus sanctus.

 Cum Sancto Spiritu.

 —Credo

 Credo in unum Deum.

 Patrem omnipotentem.

 Et in unum Dominum.

 Et incarnatus est.

 Crucifixus. <—

 Et resurrexit.

 Et in Spiritum Sanctum.

 Confiteor.

 Et expecto.

 —Sanctus, Hosanna, Benedictus, Agnus Dei

Sanctus.

 Hosanna.

 Benedictus.

 Hosanna (da capo).

 Agnus Dei.

 Dona nobis pacem.

В частности, три центральных элемента группы Credo рассказывают о жизни Христа, начиная от воплощения (Et incarnatus est) до воскрешения (Et resurrexit), центральная часть повествует о распятии (Crucifixus).

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги