МУЗЫКАЛЬНЫЕ КРИПТОГРАММЫ
Криптограмма — сообщение, которое нельзя прочитать, не зная ключа шифра. Это сообщение может быть спрятано внутри рисунка, в тексте или посреди беспорядочно расположенных цифр и букв. Музыкальная криптограмма — это произведение, в котором зашифрован текст. Чтобы прочитать его, необходимо всего лишь записать обозначения всех его нот. Многие композиторы создавали произведения, следуя такой системе. Наиболее известной музыкальной криптограммой, вне всякого сомнения, является В-А-С-Н, в которой используется классическая немецкая нотация. В этой нотации си-бемоль обозначается буквой В, ля — буквой А, до — буквой С, си — буквой Н.
Другими известными криптограммами являются:
— ABEGG в честь Meta Abegg в «Вариациях на тему Abegg» Роберта Шумана;
— CAGE в честь Джона Кейджа. Этот мотив использовала Полина Оливейрос;
— GADE в честь Нильса Гаде. Этот мотив использовал Роберт Шуман.
Антон Веберн в своем Струнном квартете, соч. 28 использовал четыре ноты В-А-С-Н и два геометрических преобразования, с помощью которых превратил эти четыре ноты в восемь.
Австрийский композитор
— пианино: Арнольд Шёнберг (ADSCHBEG);
— скрипка: Антон Веберн (АЕВЕ);
— труба: Альбан Берг (ABABEG).
* * *
Итальянский математик Леонардо Пизанский, известный как
«Пусть в огороженном месте имеется пара кроликов (самка и самец) в первый день января. Эта пара кроликов производит новую пару кроликов в первый день февраля и затем в первый день каждого следующего месяца. Каждая новорожденная пара кроликов становится зрелой уже через месяц и затем каждый месяц дает жизнь новой паре кроликов. Возникает вопрос: сколько пар кроликов будет в огороженном месте через год, то есть через 12 месяцев с начала размножения?»
Ответ на эту интересную задачу таков:
— В первые два месяца имеется всего одна пара кроликов,
— В третьем месяце родится
— В четвертом месяцев родится
— В пятом месяце родится
Численность кроликов в последующие месяцы будет описываться последовательностью 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… Эта последовательность чисел известна как числа Фибоначчи. Если мы поделим каждый член этой последовательности на предыдущий, получим:
Отношения членов ряда Фибоначчи стремятся к числу 1,618033989…, известному как золотое сечение, или божественная пропорция. Числа Фибоначчи часто встречаются в природе: например, ими описывается число семечек в спиралях подсолнуха, расположение ветвей растений, спирали раковин моллюсков и так далее.