Каждое музыкальное измерение определенного стиля можно проанализировать с помощью статистических методов. Например, если мы хотим изучить тематические мотивы сонат Бетховена, можно проанализировать ширину выбранного регистра, то есть интервал между самой низкой и самой высокой нотой. Статистика покажет, в каких из этих мотивов ширина регистра равна 1 полутону, 2, 3 и так далее. (Кстати, интересно узнать минимальную ширину интервала, использованную Бетховеном, то есть первый ненулевой член этой числовой последовательности.) Похожая статистика поможет проанализировать любой другой параметр.
Хотя с помощью методов статистики можно получить общее представление о композиции, в нем не будет учитываться контекст: при копировании стиля распределение нот, возможно, будет не столь важно (информация о том, сколько нот до содержится в произведении, будет абсолютно бесполезной, если мы запишем все эти ноты подряд в самом начале нашей композиции). Важно знать не то, сколько раз используется каждая нота по отдельности, а то, как связаны ноты между собой.
Решить эту задачу нам помогут цепи Маркова. Суть их использования заключается в следующем. С помощью методов статистики мы изучаем порядок следования различных «состояний» системы. Применительно к созданию мелодий цепи Маркова позволяют воспроизвести закономерности, которые указывают, как определенные последовательности нот влияют на звучащие в дальнейшем ноты.
День рождения
В следующем примере мы используем цепи Маркова, чтобы создать мелодию в стиле известной песни
В следующей таблице показано, сколько раз каждая нота встречается в этой мелодии:
Может показаться, что если мы хотим написать мелодию в этом же стиле, в новой мелодии ноты должны располагаться в точно таком же соотношении. Но в действительности такая мелодия будет иметь мало общего с оригиналом.
Вместо того чтобы анализировать, сколько раз в мелодии встречается каждая нота, с помощью цепей Маркова можно определить, в какой последовательности они располагаются. 26 нот мелодии упорядочены с помощью 25 переходов: первый переход
В следующей таблице приведено число переходов каждого типа:
Даже если мы выберем первую ноту произвольным образом, следующие ноты будут выбраны в соответствии с информацией о числе переходов каждого типа, которая содержится в таблице.
Начнем новую мелодию с ноты
Повторим эти же действия для пяти возможных вариантов выбора ноты, следующей за
Второй
Мы только что проанализировали музыкальное произведение с помощью марковского процесса первого порядка, учитывая, как каждая нота зависит от предыдущей. Попробуем теперь использовать марковский процесс второго порядка и определить, как каждая нота зависит от двух предыдущих. Проанализируем исходную мелодию еще раз. Первый переход второго порядка — это
Хотя число возможных переходов второго порядка равняется 64·8 = 512, в мелодии используется лишь несколько из них. Они представлены в таблице:
При создании мелодии второго порядка нужно выполнить те же действия, что и в предыдущем случае. Разница заключается только в том, что останется совсем немного способов «свернуть» с пути, заданного исходной мелодией. Далее приведена мелодия, созданная по этому методу:
Эти мелодии воссоздают исходную
EMI