Читаем Том 12. Числа-основа гармонии. Музыка и математика полностью

Алгоритмическая композиция представляет собой математическое моделирование процесса вдохновения. Композитор создает алгоритм, получающий некоторую информацию на входе и выдающий другую информацию на выходе. Какой смысл в создании музыки по алгоритму? В конечном счете разумно считать музыку способом коммуникации, выражающим человеческие эмоции, индивидуальное видение реальности определенного человека. Зачем нужны машины, способные создавать музыку? Будет ли результат их работы музыкой в полном смысле этого слова? Что такое музыка вообще?

Во-первых, хотя музыка остается средством выражения возвышенного, ее роль давно вышла за эти рамки. Музыка стала частью огромного рынка, который постоянно требует появления все новых и новых песен и исполнителей. В этом смысле композитор не более чем винтик механизма, без которого в недалеком будущем можно будет обойтись. Тот факт, что человека можно заменить, не ставит под сомнение качество работы композитора и корректность алгоритма, а показывает, что и люди, и алгоритмы являются частью одной стандартизованной системы.

Во-вторых, создание алгоритма, способного «написать» качественную музыку, — это задача, перед которой сложно устоять программистам, интересующимся музыкой. Правила, по которым создается музыка, можно проанализировать математически, но этот анализ имеет предел, после которого в объяснениях неизбежно начинают фигурировать такие понятия, как «вдохновение», «духовность», «чувственность», «искусство». Можно ли преодолеть этот предел? Доступны ли человеческому интеллекту глубинные правила, по которым создается музыка? Наступит ли день, когда какой-то программист, используя современные математические методы, подобно Прометею сможет «украсть» божественный огонь вдохновения и сделать его доступным для всех?

<p>Приложение I</p><p>Основные понятия музыкальной нотации и теории музыки</p>

В этом приложении мы расскажем об основных понятиях теории музыки, чтобы вы смогли лучше понять, о чем идет речь в книге. Музыкальная запись — пример того, как математика применяется в искусстве. Возможно, ее применение в музыке не столь очевидно, как, например, использование геометрии в живописи, но современная музыкальная нотация содержит ряд правил и символов, которые имеют математическое происхождение или интерпретируются по математическим законам.

Музыкальная нотация не была создана в одночасье, она является результатом длительного эволюционного процесса. Не так давно стали предлагаться альтернативные, более эффективные формы нотации, но из-за широкого распространения традиционной нотации внести в нее какие-либо изменения сложно, и на перестройку понадобится длительное время.

Высота

Высотой называется воспринимаемое значение «тона». Тон — это свойство звука, напрямую связанное с частотой звуковой волны. Частота звука измеряется в герцах (Гц). Высота — это свойство, позволяющее различать высокие и низкие звуки (чем больше частота, тем выше звук), а также распознавать ноты. Человеческое ухо способно улавливать звуковые колебания частотой примерно от 20 до 20 000 Гц. Звуки более низкой частоты называются инфразвуком, более высокой — ультразвуком. Чтобы упорядочить относительные высоты звуков, в 1939 году был определен стандартный тон для ноты ля, значение которого равно 440 Гц.

Интервалы

Интервалом называется разница высот двух звуков, воспринимаемая слушателем. Интервалы называются по порядку, который соответствует числу ступеней, разделяющих звуки, включая границы интервала. Это витиеватое определение проще понять на примере. Если сыграть одновременно ноту фа и более высокую, ля, то вы услышите интервал в одну терцию (фа-соль-ля — три ноты). Ноту ля и следующую по высоте фа разделяет секста (ля-си-до-ре-ми-фа — шесть нот).

При определении интервала первым называют более низкий звук. Например, секунда образуется двумя звуками звукоряда, идущими подряд: до — ре, ре — ми, ми — фа и так далее. Терции выглядят так: до — ми, ре — фа, ми — соль, фа — ля, соль — си.

Таким образом, интервал до — ре — это секунда, интервал ре — до — септима. Полный интервал между двумя равными нотами, например до — до, называется октавой. Октава делится на 12 полутонов.

Интервалы, меньшие и равные октаве, в музыкальной нотации.

Классификация интервалов

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное