Читаем Том 12. Числа-основа гармонии. Музыка и математика полностью

Интервалы делятся на большие, малые и чистые в зависимости от числа полутонов. Например, два звука секунды до-ре разделены двумя полутонами, поэтому этот интервал называется большая секунда. Две ноты другой секунды, си-до, разделены одним полутоном, поэтому этот интервал называется малая секунда. Большими и малыми могут быть все интервалы, за исключением интервалов из пяти, шести и семи полутонов. Интервал в пять полутонов называется чистой квартой, в семь полутонов — чистой квинтой. Частный случай — нота, находящаяся ровно посередине октавы: в октаве до-до фа-диез удалено на шесть полутонов от более низкого до (увеличенная кварта) и на шесть полутонов от более высокого до (уменьшенная квинта).

Если звуки берутся последовательно, то такой интервал называется мелодическим. Он может быть восходящим или нисходящим. Вид интервала также указывается в его названии. Например, восходящий интервал до-ре называется восходящей большой секундой, нисходящий интервал до-ре — нисходящей малой септимой. Нисходящий интервал ре-до — нисходящая большая секунда, восходящий интервал ре-до — восходящая малая септима. В зависимости от контекста вид интервала может не указываться.

Все возможные мелодические интервалы между двумя соседними нотами.

В следующей таблице приведено количество полутонов в различных интервалах:

Обращения интервалов

Обращенным называется интервал, который в сумме с основным интервалом охватывает все 12 полутонов октавы. Основной и обращенный интервалы напоминают дополнительные углы в геометрии, что показано на рисунке:

Обращенным интервалом чистой кварты (из пяти полутонов) является чистая квинта (из семи полутонов): соль-до (чистая кварта) и до-соль (чистая квинта). Дополнительным к углу α называется такой угол β, который в сумме с ним дает 90°.

Два интервала, в сумме образующие октаву.

В следующей таблице приведены обращенные интервалы для всех основных интервалов:

Обертоны

Когда музыкальный инструмент издает звук, он имеет конкретную частоту F, но человеческое ухо воспринимает этот звук не как чистый тон, а как сумму бесконечного числа составляющих. Струна колеблется из стороны в сторону не упорядоченно, а хаотически. Звук, издаваемый струной, или любая другая нота, которую слышит наше ухо, складывается из основного тона и других призвуков — звуков меньшей интенсивности, которые называются обертонами. Нота, которую мы слышим, — это составной звук, но основной тон и все обертоны являются чистыми звуками. Из множества обертонов, составляющих звук, человеческое ухо улавливает всего 16.

На схеме изображена струна, частоты колебаний которой соответствуют первым обертонам.

Если на музыкальном инструменте исполняется нота до, то ряд из шестнадцати обертонов, воспринимаемых человеческим ухом, для этого звука будет выглядеть следующим образом:

В таблице приведены частоты различных обертонов. Например, 5-й обертон соответствует звуку, частота которого в пять раз больше частоты основного тона в 33 Гц: 33·5 = 165 Гц.

В музыкальной нотации 16 обертонам соответствуют следующие ноты:

Консонанс и диссонанс

Звуки, воспроизводимые одновременно, могут восприниматься как благозвучные (в этом случае имеет место консонанс) или неблагозвучные, напряженные (мы называем их диссонирующими). В главе 1 мы рассказали о том, что пифагорейцы считали причиной благозвучия или неблагозвучия особое соотношение длин струн, издававших эти звуки. Иными словами, для пифагорейцев согласованность звуков определялась соотношением их частот. Пифагорейцы считали октаву (она разделяет два звука, исполняемые на струнах, соотношение длин которых 1:2), квинту (соотношение длин струн для нее 2:3) и кварту (3:4) благозвучными. Другие интервалы, производные от трех основных, оказывались диссонирующими, так как соотношения частот для соответствующих звуков выражались сложными числами. На следующих иллюстрациях указаны основные интервалы и соотношения частот звуков, соответствующих границам этих интервалов:

Среди многочисленных гипотез, возникших в то время, особенный интерес представляет теория, согласно которой степень созвучности двух звуков тем больше, чем больше общих обертонов они имеют.

Запись времени на партитуре

Рассуждения о сути ритма (см. главу 2) позволили нам выделить различные свойства, описывающие чередование нот и пауз. Это дало возможность точнее записывать музыкальные произведения.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное