Читаем Том 13. Абсолютная точность и другие иллюзии. Секреты статистики полностью

3. Нужно произвести расчеты: если в озере N рыб, а мы пометили М из них, то соотношение помеченных рыб к общему их числу равно M/N. Объем повторно взятой выборки, которую можно считать репрезентативной выборкой рыбы в озере, равен С. Из С выловленных рыб R помеченных. Разумно предположить, что доля помеченных рыб во второй выборке равна доле помеченных рыб в озере, иными словами,


Таким образом, примерное число рыб в озере N равно


Рассмотрим пример с конкретными числами.

Сначала вылавливается и помечается М рыб (их можно считать случайной выборкой из N рыб, обитающих в озере). В нашем случае М = 13.



Мы выжидаем некоторое время, чтобы помеченные рыбы равномерно распределились по всему озеру, и вылавливаем С рыб, из которых имеют метку. В нашем случае С = 15, = 3.



Произведем вычисления. Число рыб в озере примерно равно:

N = M·C/R = 15·15/3 = 75



Но что означает «примерно равно»? Если вы подсчитаете число рыб на рисунке в нашем примере, то увидите, что их всего 67. Следовательно, погрешность в расчетах составляет 12 %. Эта ошибка больше или меньше, чем следовало ожидать? Какова возможная величина ошибки при использовании этого метода?

Статистика отвечает на эти вопросы, используя разумные предположения и математические инструменты. Однако чтобы получить достаточно точный результат, мы можем прибегнуть к помощи небольшой компьютерной программы, моделирующей вылов рыбы из озера. Мы можем повторить вышеописанные действия произвольное число раз и на основе примерной оценки числа рыб, полученной при каждом моделировании, оценить величину ошибки и частоту, с которой они возникают.

Если мы будем использовать те же числа, что и в нашем примере, то увидим, что в 85 % случаев число помеченных рыб во второй выборке будет варьироваться от 2 до 5. Используя выведенную нами формулу, получим, что число рыб в озере лежит в интервале от 45 до 112. В 15 % случаев число рыб будет лежать вне этого интервала.



Распределение числа помеченных рыб в повторной выборке (моделирование было выполнено 10 000 раз).


Оценка числа рыб бывает чаще избыточной, чем недостаточной. Среднее оценочное значение 82 также больше фактического числа рыб в озере. В этом случае говорят, что оценка является смещенной и не отражает истинного значения оцениваемой величины.

Оценка существенно улучшится, если внести в формулу небольшие изменения. Проблема в том, что объяснить, почему следует внести именно эти поправки, достаточно сложно.


Выполнив расчеты с помощью этой формулы, получим, что если в повторной выборке встретилось 2 помеченных рыбы, то оценка общего числа равна 85, если число помеченных рыб равно 5, то оценка общего числа равна 42. Следовательно, в 85 % случаев оценка численности рыб будет лежать в интервале от 42 до 85. Кроме того, в 27 % случаев число помеченных рыб будет равно 3, что соответствует числу в 64 рыбы, и это очень близко к истинному значению. Эта оценка является несмещенной: если мы повторим вышеописанные действия множество раз, то средняя оценка будет совпадать с истинным значением.

Также можно ввести поправочные коэффициенты, если вы считаете, что вероятность вылова разных рыб отличается, метка влияет на выживаемость рыб или метка может стираться. Эта тема очень подробно изучена и описана в книгах по экологии. Также это прекрасный пример того, как статистика может решать задачи, которые кажутся крайне сложными или вовсе невозможными.


Такси

Подсчитать число такси в городе намного проще, чем количество рыб в озере. Можно начать с поиска этой информации в Интернете. Так, например, на сайте администрации крупного города может быть указано, что общее число выданных лицензий равно 10481. Каждая лицензия соответствует одному автомобилю. Задача решена.



Однако если эта информация недоступна в Интернете, можно воспользоваться методами статистики. Номер лицензии написан на каждом автомобиле такси. Максимально возможным номером является число выданных лицензий. Когда мы покупаем новый автомобиль, нам выдается новый номер (следующий за последним выданным), а номер старого автомобиля уничтожается.

Однако с номером лицензии такси дело обстоит иначе (возможно, с некоторыми исключениями): число лицензий фиксировано, и если кто-то хочет приобрести ее, то может купить только у одного из ее нынешних обладателей. Номер лицензии при этом не изменится. Это значительно упрощает подсчеты. Не пользуясь ни телефоном, ни Интернетом, постояв в центре города всего 10 минут, можно очень точно определить число такси в городе. Посмотрим, как это делается.

Допустим, мы выбрали из генеральной совокупности следующие значения: 8, 14, 22, 27 и 35. Попробуем оценить число элементов генеральной совокупности на основе этой выборки. Оно будет однозначно больше 25, так как выборка содержит число 35, и крайне маловероятно, что оно будет равно 1000, так как все пять случайно выбранных элементов генеральной совокупности достаточно невелики. Точная оценка будет примерно равной 40 или 50.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика