Читаем Том 13. Абсолютная точность и другие иллюзии. Секреты статистики полностью

Рассмотрим пример. Одной из классических книг по проведению экспериментов является Statistics for Experimenters Бокса, Хантера и Хантера, где объясняется, как нужно провести эксперимент, чтобы сравнить степень износа различных материалов, из которых изготавливается подошва молодежной обуви. Если в эксперименте участвует всего 10 молодых людей, их можно разделить случайным образом на две группы по 5 человек: члены одной группы получат обувь с подошвой из материала А, члены второй группы — обувь с подошвой из материала В. По прошествии определенного времени (например, полугода) нужно измерить износ подошв на всех парах обуви и провести соответствующий статистический анализ (в этом случае будет использоваться так называемый t-критерий Стьюдента для независимой выборки).

Естественно, что группы следует формировать случайным образом. Не стоит просить подростков выстроиться в шеренгу и выдавать первым пяти обувь с подошвой из материала А, последним пяти — обувь с подошвой из материала В: те, кто встал в шеренгу первыми, больше бегают и двигаются, поэтому быстрее износят обувь.

Однако этот способ сбора данных имеет один недостаток. Износ подошвы зависит не только от материала (именно это мы анализируем в ходе эксперимента), но и от самого подростка: некоторые из них больше бегают и будут даже играть в футбол в этой обуви, другие будут бегать меньше. Некоторые, возможно, почти не будут надевать выданную обувь, так как она им не понравится или они побоятся порвать ее, и подошвы не износятся.

Так как на износ подошвы влияет не только материал, из которого она изготовлена, но и другие факторы, то мы не сможем определить, какой именно фактор будет причиной возможных различий. Может случиться так, что по вине посторонних факторов различий наблюдаться не будет, но в действительности подошвы из анализируемых материалов будут изнашиваться по-разному.

Как справиться с этой проблемой? Нужно выдать каждому подростку один ботинок с подошвой из первого материала, другой — с подошвой из другого материала. В этом случае все возможные отличия в износе подошвы будут вызваны исключительно различными свойствами материалов и никаким другим фактором. В этом случае сравниваются не средние значения в обеих группах, а износ подошв обоих ботинок каждого подростка. Если одна подошва в среднем изнашивается больше другой (не имеет значения, насколько сильно они изнашиваются, важна лишь разница между ними), это вызвано различием в свойствах материалов.

Для сравнения средних значений выборок, сформированных таким образом, используется так называемый t-критерий Стьюдента для парных выборок.

Очевидно, что не следует изготавливать из материала А подошву только правых ботинок, а из материала В — подошву левых ботинок, так как, возможно, подошвы на одной ноге в среднем изнашиваются больше. Этого можно избежать, если чередовать материалы случайным образом (например, бросать монету для каждой пары обуви, и если выпадает решка, то из материала А изготавливается подошва правого ботинка).

Таким образом, ожидается, что если обувь на конкретной ноге изнашивается больше, при чередовании материалов случайным образом возможное влияние этого фактора будет устранено.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика