Читаем Том 18. Открытие без границ. Бесконечность в математике полностью

 Кронекер  как-то  сказал:  «Бог  создал  первые  десять  чисел,  все  остальное  создал человек»,  выразив  тем  самым,  сколь  велика  заслуга  математики.  По  его  мнению,  все в  математике  должно  было  строиться  из  известных,  четко  определенных  элементов и  за  конечное  число  этапов.  Иными  словами,  Кронекер  не  хотел  ничего  слышать об  актуальной  бесконечности.  Как-то  раз  он  заявил,  что  от  бесконечности  следует отказаться  как  от  «...пагубной  бессмыслицы,  унаследованной  от  древней  философии  и  запутанной  теологии.  Без  нее  мы  можем  достичь  всего,  чего  захотим...»

 Кронекер  был  явным  последователем  финитизма,  а  также  операционизма,  в  котором  не  признаются  никакие  рассуждения,  не  подкрепленные  четко  определенными  математическими  операциями.  Он  заявил,  очевидно,  имея  в  виду  труды  Кантора, что  математике  необходим  контроль  со  стороны  признанных  ученых,  так  как  «богатый  практический  опыт  решения  полезных  и  интересных  задач  даст  математике новый  смысл  и  новый  импульс.  Однобокие  и  интроспективные  умозрительные  заключения  не  дают  плодов».

 Следует  учитывать,  что  Кронекер  был  одним  из  редакторов  журнала  Крелле, поэтому  неудивительно,  что  в  1877  году  он  отклонил  все  рукописи,  переданные Кантором  для  публикации  в  этом  журнале.  Расхождение  во  взглядах  переросло в  личную  неприязнь,  и  Кронекер  публично  назвал  Кантора  ренегатом,  шарлатаном и  совратителем  учащейся  молодежи.

 Не  будем  забывать,  что  Кантор  был  лучшим  учеником  Кронекера,  естественно, что  он  очень  болезненно  переживал  подобное  отношение  учителя  и  получил  глубокую  психологическую  травму,  от  которой  ему  так  и  не  удалось  оправиться.


 Дедекинд


 Юлиус  Вильгельм  Рихард  Дедекинд  (1831—1916),  который  родился  в  Брауншвейге  и  был  четвертым  ребенком  в  зажиточной  семье,  большую  часть  жизни  посвятил математическим  исследованиям.  Он  был  алгебраистом  и  стремился  сформировать фундаментальную  основу  анализа,  для  чего  в  качестве  базы  выбрал  множества и  отображения  множеств.

 Вейерштрасс,  Кантор  и  Дедекинд  независимо  друг  от  друга  работали  над  определением  вещественных  чисел.  Работы  Кантора  и  Дедекинда  стали  классическими   и  вошли  в  учебники.  Труды  Кантора,  в  основе  которых  лежала  теория  множеств, были  наиболее  близки  Дедекинду,  особенно  потому,  что  оба  они  работали  над  большой  темой  непрерывности  пространства,  носившей  больше  философский,  нежели математический  характер.  И  Кантор,  и  Дедекинд  утверждали,  что  доказать  непрерывность  пространства  абсолютно  невозможно.  Максимум,  что  можно  сделать,  — это  принять  гипотезу  о  непрерывности  пространства  в  качестве  постулата.



 На  этой  памятной  марке,  выпущенной  в  честь  Дедекинда, справа  изображена  формула  разложения  числа на  простые  множители.


 В  1872  году,  находясь  на  отдыхе  в  Швейцарии,  Кантор  познакомился  с  Дедекиндом  —  одним  из  немногих  математиков  того  времени,  если  не  сказать  единственным,  с  которым  он  поддерживал  близкие  отношения,  основанные  на  взаимном доверии  и  уважении.  Рождение  теории  множеств  можно  четко  проследить,  если  ознакомиться  с  их  перепиской  в  1874—1884  годах.  Любопытно,  что  в  большинстве наиболее  важных  статей  Дедекинд  почти  не  использует  понятие  «множество»:  он считал,  что  Кантор  уже  совершил  наиболее  важные  открытия  в  этой  области,  поэтому  больше  внимания  уделял  понятию  отображения.

В  1881  году  на  кафедре  математики  Университета  Галле  освободилась  должность преподавателя,  и  Кантор  предложил  кандидатуру  Дедекинда,  написав  в  Министерство  образования  письмо,  в  котором  подчеркнул  положительные  качества  своего друга.  Однако,  несмотря  на  настойчивые  просьбы  Кантора,  Дедекинд  отказался от  этой  должности  —  у  него  совершенно  отсутствовали  какие-либо  амбиции  и  желание  занять  высокое  место  в  научных  кругах.  В  течение  тридцати  лет  Дедекинд  преподавал  в  Карловском  коллегиуме,  где  работали  его  отец  и  дед.  К  тому  же  чиновники  министерства  отдали  должность  преподавателю,  рекомендованному  Кронекером.

 В  результате  отношения  между  Кантором  и  Дедекиндом  остыли,  и  переписка  между ними  прекратилась  на  семнадцать  лет.  Лишь  в  1899  году  по  инициативе  Кантора ученые  вновь  начали  общаться.


 Миттаг-Леффлер


 В  то  самое  время,  когда  отношения  между Кантором  и  Дедекиндом  прекратились, на  горизонте  появилась  новая  личность,  которой  суждено  было  получить  признание в  научном  мире  и  поддержать  Кантора в  один  из  тяжелейших  периодов  его  жизни.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука