Согласно уравнению (4.25), скалярный потенциал φ представляется трехмерным интегралом, подобным тому, который мы писали для Е
. Есть ли какая выгода в том, что вместо Е вычисляется φ? Да. Для вычисления φ нужно взять один интеграл, а для вычисления Е — три (ведь это вектор). Кроме того, обычно 1/r интегрировать легче, чем x/r3. Во многих практических случаях оказывается, что для получения электрического поля легче сперва подсчитать φ, а после взять градиент, чем вычислять три интеграла для Е. Это просто вопрос удобства.Но потенциал φ имеет и глубокий физический смысл. Мы показали, что Е
закона Кулона получается из Е=-gradφ, где φ дается уравнением (4.22). Но если Е — это градиент скалярного поля, то, как известно из векторного исчисления, ротор Е должен обратиться в нуль:Но это и есть наше второе основное уравнение электростатики — уравнение (4.6). Таким образом, мы показали, что закон Кулона дает поле Е
, удовлетворяющее этому условию. Так что до сих пор все в порядке.На самом деле то, что ∇
×Е равно нулю, было доказано еще до того, как мы определили потенциал. Мы показали, что работа обхода по замкнутому пути равна нулю, т. е.по
Вы можете потренироваться в векторном исчислении, доказав равенство нулю вектора ∇
×Е другим способом, т. е. вычислив компоненты вектора ∇×Е для поля точечного заряда по формулам (4.11). Если получится нуль, то принцип наложения обеспечит нам обращение ∇×Е в нуль для любого распределения зарядов.Следует подчеркнуть важный факт. Для любой
§ 5. Поток поля Е
Теперь мы хотим вывести уравнение, которое непосредственно и в лоб учитывает тот факт, что закон силы — это закон обратных квадратов. Кое-кому кажется «вполне естественным», что поле меняется обратно пропорционально квадрату расстояния, потому что «именно так, мол, все распространяется». Возьмите световой источник, из которого льется поток света; количество света, проходящее через основание конуса с вершиной в источнике, одно и то же независимо от того, насколько основание удалено от вершины. Это с необходимостью следует из сохранения световой энергии. Количество света на единицу площади — интенсивность — должно быть обратно пропорционально площади, вырезанной конусом, т. е. квадрату расстояния от источника. Ясно, что по той же причине и электрическое поле должно изменяться обратно квадрату расстояния!
Но здесь ведь нет ничего похожего на «ту же причину». Ведь никто не может сказать, что электрическое поле есть мера чего-то такого, что похоже на свет и что поэтому должно сохраняться.