Читаем Том 22. Сон разума. Математическая логика и ее парадоксы полностью

Давид Гильберт был не единственным, кто отвергал неконструктивные методы. Одновременно с логицизмом и формализмом развивалась еще одна концепция, призванная разрешить парадоксы теории множеств, в которой предполагалось полно стью исключить использование бесконечности. Для интуиционистов все математические объекты были продуктами человеческого разума, следовательно, они могли существовать только в том случае, если их можно было построить. Последователи этого направления различали потенциальную бесконечность, соответствующую множествам, которые можно неограниченно расширять, и актуальную бесконечность, характерную для законченных сущностей. Интуиционисты признавали, что натуральных чисел потенциально бесконечно много, так как к любому конечному множеству вида {0, 1, 2, …, n} можно добавить новые числа, однако нельзя говорить обо всех натуральных числах одновременно. Они также не признавали закон исключенного третьего, согласно которому для любого высказывания истинным обязательно является либо оно само, либо его отрицание. Отвергнув этот закон, сторонники интуиционизма были вынуждены также отвергнуть все математические теоремы, в доказательстве которых он использовался. Сам основоположник интуиционизма, датский математик Лёйтзен Эгберт Ян Брауэр (1881–1966), был вынужден отвергнуть множество ранее полученных им самим результатов, в которых использовался закон исключенного третьего.

Интуиционисты также хотели избавиться от аксиомы выбора, предложенной Эрнстом Цермело для теории множеств. Согласно этой аксиоме, для данной совокупности множеств, конечной или бесконечной, можно выбрать по одному элементу из каждого множества и таким образом определить новое множество. Тем, кто не признавал существование актуальной бесконечности, вряд ли понравился бы подобный способ выбора элементов, который был сродни магии, не подчиняющийся никакому четкому правилу.

В ряде статей, опубликованных с 1904 по 1927 год, Давид Гильберт постепенно уточнял свою стратегию замены всех математических доказательств доказательствами, выполненными с помощью финитных методов. Кульминацией его программы должно было стать максимально строгое и четкое доказательство непротиворечивости арифметики. Однако глава Гёттингенской математической школы не мог и предположить, что некий австрийский юноша, который начал изучать в Венском университете физику, а затем и математику, попытается дополнить формалистскую программу и обнаружит, что мечте Гильберта не суждено сбыться. И более того, соберется доказать это финитными методами!

<p>Глава 4</p><p>Теоремы <emphasis>Гёделя</emphasis></p>

«Когда возникнет противоречие, необходимости в споре между двумя философами будет не более, чем между двумя математиками. Им будет достаточно взять перья и абак и сказать друг другу: произведем вычисления».

Готфрид Вильгельм Лейбниц

Улицы Кёнигсберга видели многое. В этом городе семь мостов, и жители не раз задавались вопросом: можно ли пройти по всем мостам ровно один раз и при этом вернуться в исходную точку? Этого не мог сделать никто, но и доказать, что это невозможно, также не удавалось, пока в 1735 году швейцарский математик Леонард Эйлер не создал теорию графов и не дал отрицательный ответ на этот вопрос.

Сорок лет спустя Иммануил Кант гулял по тем же мостам, пытаясь определить пределы чистого разума. Давид Гильберт также родился возле Кёнигсберга, и у общества сторонников эмпирической философии было достаточно причин, чтобы совместно с Венским кружком именно в этом городе провести конференцию с 5 по 7 сентября 1930 года.

Схема решения задачи о кёнигсбергских мостах, принадлежащего Леонарду Эйлеру.

Целью конференции было определить, в какой степени в первые годы XX века удалось справиться с кризисом, вызванным парадоксом Рассела. Докладчиками на пленарном заседании стали те, кто внес наибольший вклад в развитие трех направлений, призванных разрешить кризис: логицизма, сторонники которого считали, что всю математику можно свести к логике; формализма, успехи которого заключались в проведении различий между языком и метаязыком; и интуицизма, в рамках которого предпринималась попытка исключить бесконечность из математики. Также в программу входили доклады участников, желавших представить свои последние открытия, и непринужденные беседы в городских кафе, которые, хотя и не могли сравниться с венскими, но тоже были весьма уютными.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг