Читаем Том 22. Сон разума. Математическая логика и ее парадоксы полностью

Гениальная идея Тьюринга, позволившая определить границы возможностей компьютеров будущего, заключалась в том, чтобы со всей серьезностью обдумать, что означает «мыслить как машина». Очевидно, что компьютер не обладает ни разумом, ни воображением человека, которые позволяют нам действовать в совершенно незнакомых ситуациях. С другой стороны, машины не устают и не скучают, выполняя трудоемкие вычисления, у них никогда не бывает «плохих дней». Они — машины! Чтобы отличить задачи, которые компьютер не способен решить ввиду технических ограничений (например, потому что время выполнения написанной программы будет сопоставимо с возрастом вселенной), от тех, которые неразрешимы из-за особенностей формулировки самой задачи, Тьюринг описал идеальный компьютер с бесконечным объемом памяти и бесконечным временем выполнения программ. Задача, которую не могла решить эта машина Тьюринга, не поддалась бы самому мощному компьютеру будущего, таким образом, метод, разработанный английским математиком, позволял определить границы возможностей компьютеров.

Вверху — памятная марка, выпущенная в честь столетия со дня рождения Чарльза Бэббиджа. Внизу — табличка у садов Барселоны, посвященных Аде Байрон

(фото: Анна Наварро Дюран).

* * *

ЧИСЛА БЕРНУЛЛИ

В одной из известнейших историй о Карле Фридрихе Гауссе рассказывается, что как-то раз его учитель в начальной школе захотел немного передохнуть и дал ученикам задание сложить все числа от 1 до 100. Учитель не рассчитывал, что юный Гаусс мгновенно найдет ответ, применив метод, который он затем использовал для вычисления суммы чисел от 1 до 1000. Пусть нужно найти сумму всех натуральных чисел, предшествующих числу n. Идея Гаусса заключалась в том, чтобы записать сумму 1 + 2 + … + n в обратном порядке и воспользоваться симметрией ее членов так, как показано ниже:

Читатель легко может убедиться, что если сгруппировать каждое слагаемое с тем, что записано под ним, их сумма всегда будет равна n + 1. Так как этот процесс повторяется раз, результатом сложения будет n(n + 1). Однако в этой сумме каждое число учитывается дважды: один раз — в первом ряду, один раз — во втором. Следовательно, полученную сумму нужно разделить на два:

Читатель спросит, сможем ли мы, заменив первые n чисел на первые n квадратов, получить похожую формулу. Применив несколько более сложный метод, можно доказать, что

и что сумма первых кубов рассчитывается по формуле

В общем случае, k-е число Бернулли связано с коэффициентами, которые появляются в формуле суммы n первых степеней многочлена k-го порядка от переменной n. Этим числам легко дать словесное определение, но сложно вычислить по формуле, поэтому алгоритм, разработанный Адой Байрон, стал огромным шагом вперед.

* * *

Вычислимые функции
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг