Используем утверждение из предыдущего раздела (проекции, сохраняющие расстояния, сохраняют и кратчайшие пути), чтобы доказать, что в этом случае кривые на сфере преобразуются в кривые на плоскости, имеющие ту же длину. Почему это утверждение верно? Во-первых, любую кривую на сфере можно приближенно представить в виде конечного (но достаточно большого) числа дуг больших кругов. Концы этих дуг
Следовательно, длину кривой можно приближенно представить как сумму длин этих дуг, или, иными словами, как сумму расстояний между их концами. Так как речь идет о дугах больших кругов, это будут кратчайшие расстояния, соединяющие концы дуг:
l(
Во-вторых, кривую на плоскости, которая является отображением исходной кривой на сфере, можно приближенно представить с помощью множества отрезков, которые будут отображениями дуг больших кругов (об этом мы рассказали в прошлом разделе), а длину плоской кривой — как сумму длин расстояний между концами этих отрезков
l(
В-третьих, так как рассматриваемая проекция сохраняет расстояния, то расстояние между концами отрезков, составляющих исходную кривую на поверхности сферы, будет равно расстоянию между отображениями этих точек, которые будут концами отрезков, составляющих проекцию этой кривой:
d(
Учитывая три приведенных утверждения, можно сказать, что проекция преобразует кривую на сфере в плоскую кривую той же длины.
* * *