Читаем Том 3. Квантовая механика полностью

Как мы видели раньше, любая система со спином, или «полным моментом количества движения», j может существовать в одном из 2j+1 состояний, в которых z-компонента момента количества движения принимает одно из дискретных значений j, j-1, j -2, ..., -(j-1), -j (все в единицах ℏ). Обозначая z-компоненту момента количества движения произвольного выбранного состояния через mℏ, можно определить состояние момента количества движения, задав численные значения двух «квантовых чисел момента количества движения» j и m. Такое состояние можно отметить, указав вектор состояния |j, m>. В случае частиц со спином 1/2 могут быть два состояния |1/2, 1/2> и |1/2, -1/2> a состояния системы со спином 1 в этих обозначениях можно записать как |1, +1>, |1, 0>, |1, -1>. У частицы со спином 0 может быть, конечно, лишь одно состояние |0, 0>.

Теперь мы можем посмотреть, что происходит, когда мы проецируем общее состояние |j, m> на представление, относящееся к повернутой системе осей. Прежде всего известно, что j — это число, которое характеризует систему, поэтому оно не меняется. При повороте осей мы получим просто смесь различных значений m для одного и того же j. В общем случае появится амплитуда того, что система в повернутой системе координат окажется в состоянии |j, m'>, где m' — новая z-компонента момента количества движения. Значит, нам нужны матричные элементы <j, m' |R|j, m> всевозможных поворотов. Мы уже знаем, что бывает, если поворот делается на угол φ вокруг оси z. Новое состояние — это попросту старое, умноженное на eimφ, у него по-прежнему то же значение т. Это можно записать так:

(16.24)

или, если вам больше нравится,

(16.25)

(где δm,m' равно единице при m'=m, и нулю в прочих случаях).

При поворотах вокруг любой другой оси возникает перемешивание различных m-состояний. Можно было бы, конечно, попытаться подсчитать матричные элементы для произвольных поворотов, описываемых углами Эйлера β,α и γ. Но будет легче, если мы вспомним, что самый общий такой поворот может быть составлен из трех поворотов Rz(γ), Ry(α), Rz(β); так что если мы знаем матричные элементы для поворотов вокруг оси y, то уже располагаем всем необходимым.

Как же нам найти матрицу поворота для поворота частицы со спином j на угол θ вокруг оси у? Опираясь на основные законы (и на то, что уже было), это сделать нелегко. Мы так поступали со спином 1/2: вывели все, что нужно, пользуясь довольно сложными соображениями симметрии. Для спина 1 мы это проделали уже иначе: рассмотрели частный случай, когда система со спином 1 складывается из двух систем со спином 1/2. Если вы последуете за нами и признаете правильным тот факт, что в общем случае ответы зависят только от спина j, а не от того, как скреплены между собой разные части системы со спином j, то мы сможем обобщить рассуждения для спина 1 на произвольный спин. Мы сможем, например, соорудить искусственную систему со спином 3/2 из трех объектов со спином 1/2. Мы сможем даже избежать всяких усложнений, вообразив, что все они суть различные частицы — скажем, протон, электрон и мюон. Преобразуя каждый объект со спином 1/2, мы увидим, что происходит со всей системой — надо только вспомнить, что для комбинированного состояния все амплитуды перемножаются. Давайте посмотрим, как все это проходит.

Допустим, мы расположили все три объекта со спином 1/2 спинами вверх; обозначим такое состояние |+++>. Если мы взглянем на него из системы координат, повернутой относительно оси z на угол φ, то каждый плюс останется плюсом, но умножится на еiφ/2. Таких множителей у нас тройка, так что

(16.26)

Ясно, что состояние |+++> — это как раз то, что мы называем состоянием m=+3/2, или состоянием |3/2, +3/2>.

Если мы затем повернем эту систему вокруг оси у, то у каждого из объектов со спином 1/2 появится некоторая амплитуда стать плюсом или стать минусом, так что вся система станет теперь смесью восьми возможных комбинаций |+++>, |++->, |+-+>, |-++>, |+-->, |-+->, |--+> или |--->. Ясно, однако, что их можно разбить на четыре группы, чтобы каждая соответствовала своему значению m. Прежде всего мы имеем |+++>, для которого m=3/2. Затем имеется тройка состояний |++->, |+-+> и |-++> — каждое с двумя плюсами и одним минусом. Поскольку каждый из объектов со спином 1/2 имеет равные шансы стать после поворота минусом, то каждая из этих трех комбинаций должна войти на равных паях. Поэтому возьмем комбинацию

(16.27)

где множитель 1/√3 поставлен для нормировки. Если мы повернем это состояние вокруг оси z, то получим множитель eiφ/2 для каждого плюса и e-iφ/2 для каждого минуса. Каждое слагаемое в (16.27) умножится на eiφ/2, и общий множитель еiφ/2 мы вынесем за скобки. Такое состояние соответствует нашему представлению о состоянии с m=+1/2; мы приходим к выводу, что

(16.8)

Точно так же можно написать

(16.29)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги