что соответствует состоянию с m=-1/2. Заметьте, что мы берем только симметричные сочетания, у нас нет комбинаций, куда входят слагаемые со знаком минус. Они отвечали бы состояниям с таким же m, но с иным j. Это аналогично случаю спина 1, где (1/√2){|+->+|-+>} было состоянием |1,0>, а (1/√2){|+->-|-+>} было состоянием |0,0>. Наконец, мы имеем
(16.30)
Эта четверка состояний сведена в табл. 16.1.
Таблица 16.1. СВОДКА СОСТОЯНИЙ
Все, что нам теперь нужно сделать, это взять каждое состояние, повернуть его вокруг оси у и посмотреть, сколько новых состояний оно создаст — пользуясь известной нам матрицей поворота для частицы спина 1/2. Можно поступать так же, как мы это делали в случае спина 1 [см. гл. 10, § 6 (вып. 8)]. (Только алгебры будет побольше.) Мы будем строго следовать идеям гл. 10 (вып. 8), так что подробных объяснений давать не будем. Состояния в системе S будут обозначаться
и т. д.; T-системой будет считаться система, повернутая вокруг оси у системы S на угол θ. Состояния в T-системе будут обозначаться |3/2, +3/2, T>, |3/2, +1/2, T> и т. д. Ясно, что |3/2, +3/2, T> это то же самое, что |+'+'+'> (штрихи всегда относятся к T-системе). Точно так же |3/2, +1/2, T> будет равняться
и т. д. Каждое |+'>-состояние в T-системе получается как из |+>-, так и из |->-состояний в системе S с помощью матричных элементов из табл. 10.4 (вып. 8).
Если мы имеем тройку частиц со спином 1/2, то (10.47) надо заменить на
(16.31)
Пользуясь обозначениями табл. 10.4, получим вместо (10.48) уравнение
(16.32)
Это уже дает нам некоторые из наших матричных элементов <jT| iS>. Чтобы получить выражение для |3/2, +1/2, S>, мы должны исходить из преобразования состояния с двумя плюсами и одним минусом. К примеру,
(16.33)
Добавляя два сходных выражения для |+—+> и |—++> и деля на √3, найдем
(16.34)
Продолжая этот процесс, мы найдем все элементы <jT|iS> матрицы преобразования. Они приведены в табл. 16.2. Первый столбец получается из (16.32), второй — из (16.34). Последние два столбца были вычислены таким же способом.
Теперь допустим, что T-система была повернута относительно S-системы на угол θ вокруг ее оси у. Тогда а, b, с и d равны [см. (10.54), вып. 8]: а=d=cosθ/2, с=-b=sinθ/2. Подставляя это в табл. 16.2, получаем формулы, похожие на вторую половину табл. 15.2, но на этот раз для системы со спином 3/2.
Таблица 16.2. МАТРИЦА ПОВОРОТА ДЛЯ ЧАСТИЦЫ СО СПИНОМ 3/2
Коэффициенты а, b, с и d объясняются в табл. 10.4.
Рассуждения, которые мы только что провели, были обобщены на систему с произвольным спином j. Состояния |j, m> можно составить из 2j частиц со спином 1/2 у каждой. (Из них j+m будут в |+>-состоянии, а j-m будут в |->-состоянии.) Проводится суммирование по всем возможным способам, какими их можно сочетать, а затем состояния нормируются умножением на надлежащую постоянную. Если у вас есть способности к математике, то вы сможете доказать, что получается следующий результат[75]:
(16.35)
где k пробегает все те значения, при которых под знаком факториала получаются неотрицательные величины.
Это очень запутанная формула, но с ее помощью вы сможете проверить табл. 15.2 для j=1 и составить ваши собственные таблицы для больших j. Некоторые матричные элементы очень важны и получили особые наименования. Например, матричные элементы для m=m'=0 и целых j известны под названием полиномов Лежандра и обозначаются
(16.36)
Первые из них таковы:
(16.37)
(16.38)
(16.39)
(16.40)
§ 5. Измерение ядерного спина
Продемонстрируем теперь пример, где понадобятся только что описанные коэффициенты. Он связан с проделанными не так давно интересными опытами, которые вы теперь в состоянии будете понять. Некоторым физикам захотелось узнать спин одного из возбужденных состояний ядра Ne20. Для этого они принялись бомбить углеродную мишень пучком ускоренных ионов углерода и породили нужное им возбужденное состояние Ne20 (обозначаемое Ne20*) в реакции
где α1 — это α-частица, или Не4. Кое-какие из создаваемых таким образом возбужденных состояний Ne20 неустойчивы и распадаются таким путем:
Значит, на опыте видны возникающие в реакции две α-частицы. Обозначим их α1 и α2; поскольку они вылетают с разными энергиями, их можно отличить друг от друга. Кроме того, выбирая α1, имеющие нужную энергию, мы можем отобрать любые возбужденные состояния Ne20.
Опыт ставился так, как показано на фиг. 16.9.
Фиг. 16.9. Размещение приборов в опыте по определению спина возбужденных состояний Ne20.
Пучок ионов углерода с энергией 16 Мэв был направлен на углеродную пленку. Первая α-частица регистрировалась кремниевым детектором, настроенным на прием α-частиц с нужной энергией, движущихся вперед (по отношению к падающему пучку ионов С12). Вторая α-частица регистрировалась счетчиком α2, поставленным под углом θ к α1. Скорость счета сигналов совпадений от α1 и α2 измерялась как функция угла θ.