Читаем Том 3. Квантовая механика полностью

Сравнивая (16.67) с (16.65) и вспоминая, что r'+s'=r+s, мы видим, что Br' — это просто коэффициент при ar'bs' в выражении

(16.70)

Осталась лишь нудная работа разложить скобки по биному Ньютона и собрать члены с данными степенями а и b. Если вы все это проделаете, то увидите, что коэффициент при аr'bs' в (16.70) имеет вид

(16.71)

Сумма берется по всем целым k, при которых аргументы факториалов больше или в крайнем случае равны нулю. Это выражение и есть искомый матричный элемент.

В конце надо вернуться к нашим первоначальным обозначениям j, m и m', пользуясь формулами

Проделав эти подстановки, получим уравнение (16.34) из § 4.

<p><strong>Добавление 2. Сохранение четности при испускании фотона</strong></p>

В § 1 мы рассмотрели испускание света атомом, который переходит из возбужденного состояния со спином 1 в основное состояние со спином 0. Если спин возбужденного состояния направлен вверх (m=+1), то атом может излучить вверх вдоль оси +z правый фотон или вдоль оси -z левый. Обозначим эти два состояния фотона |Rвв> и |Lвн>. Ни одно из них не обладает определенной четностью. Если оператор четности обозначить ^P, то ^P|Rвв>=|Lвн> и ^P|Lвн>=|Rвв>.

Что же тогда будет с нашим прежним доказательством, что атом в состоянии с определенной энергией должен иметь определенную четность, и с нашим утверждением, что четность в атомных процессах сохраняется? Разве не должно конечное состояние в этой задаче (состояние после излучения фотона) иметь определенную четность? Да, должно, если только мы рассмотрим полное конечное состояние, в которое входят амплитуды излучения фотонов под всевозможными углами. А в § 1 мы рассматривали только часть полного конечного состояния.

Если вы хотите, можно рассмотреть только конечные состояния, у которых действительно определенная четность. Например, рассмотрим конечное состояние |ψk>, у которого есть некоторая амплитуда α оказаться правым фотоном, движущимся вдоль оси +z, и некоторая амплитуда β оказаться левым фотоном, движущимся вдоль оси -z. Можно написать

(16.72)

Оператор четности, действуя на это состояние, дает

(16.73)

Это состояние совпадает с ±|ψк> либо при β=α, либо при β=-α. Так что конечное состояние с положительной четностью таково:

(16.74)

а состояние с отрицательной четностью

(16.75)

Далее, мы хотим рассмотреть распад возбужденного состояния с отрицательной четностью на основное состояние с положительной четностью и на фотон. Если четность должна сохраниться, то конечное состояние фотона должно иметь отрицательную четность. Оно обязано быть состоянием (16.75). Если амплитуда того, что будет обнаружено |Rвв>, есть α, то амплитуда того, что будет обнаружено |Lвн>, есть -α.

Теперь обратите внимание на то, что получается, если мы проводим поворот на 180° вокруг оси у. Начальное возбужденное состояние атома становится состоянием с m=-1 (согласно табл. 15.2, знак не меняется). А поворот конечного состояния дает

(16.76)

Сравнивая это с (16.75), мы увидим, что при выбранной нами четности конечного состояния амплитуда того, что при начальном состоянии с m=-1 будет получен левый фотон, идущий в направлении +z, равна со знаком минус амплитуде того, что при начальном состоянии с m=+1 будет получен правый фотон, идущий в направлении -z. Это согласуется с результатами, полученными в § 1.

<p><strong>Глава 17 АТОМ ВОДОРОДА И ПЕРИОДИЧЕСКАЯ ТАБЛИЦА</strong></p><p><strong>§ 1. Уравнение Шредингера для атома водорода</strong></p>

Самым замечательным успехом в истории квантовой механики было объяснение всех деталей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе квантовой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объяснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объяснении таинственных свойств химических элементов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в пространстве, следуя тем представлениям, которые были развиты в гл. 14.

Для полного описания атома водорода следовало бы учесть движения обеих частиц — как протона, так и электрона. В квантовой механике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги