Сравнивая (16.67) с (16.65) и вспоминая, что
Осталась лишь нудная работа разложить скобки по биному Ньютона и собрать члены с данными степенями
Сумма берется по всем целым
В конце надо вернуться к нашим первоначальным обозначениям
Проделав эти подстановки, получим уравнение (16.34) из § 4.
Добавление 2. Сохранение четности при испускании фотона
В § 1 мы рассмотрели испускание света атомом, который переходит из возбужденного состояния со спином 1 в основное состояние со спином 0. Если спин возбужденного состояния направлен вверх (
Что же тогда будет с нашим прежним доказательством, что атом в состоянии с определенной энергией должен иметь определенную четность, и с нашим утверждением, что четность в атомных процессах сохраняется? Разве не должно конечное состояние в этой задаче (состояние после излучения фотона) иметь определенную четность? Да,
Если вы хотите, можно рассмотреть только конечные состояния, у которых действительно определенная четность. Например, рассмотрим конечное состояние |ψk>, у которого есть некоторая амплитуда α оказаться правым фотоном, движущимся вдоль оси +z, и некоторая амплитуда β оказаться левым фотоном, движущимся вдоль оси -z. Можно написать
Оператор четности, действуя на это состояние, дает
Это состояние совпадает с ±|ψк> либо при β=α, либо при β=-α. Так что конечное состояние с положительной четностью таково:
а состояние с отрицательной четностью
Далее, мы хотим рассмотреть распад возбужденного состояния с отрицательной четностью на основное состояние с положительной четностью и на фотон. Если четность должна сохраниться, то конечное состояние фотона должно иметь отрицательную четность. Оно обязано быть состоянием (16.75). Если амплитуда того, что будет обнаружено |
Теперь обратите внимание на то, что получается, если мы проводим поворот на 180° вокруг оси
Сравнивая это с (16.75), мы увидим, что при выбранной нами четности конечного состояния амплитуда того, что при начальном состоянии с
Глава 17 АТОМ ВОДОРОДА И ПЕРИОДИЧЕСКАЯ ТАБЛИЦА
§ 1. Уравнение Шредингера для атома водорода
Самым замечательным успехом в истории квантовой механики было объяснение всех деталей спектров простейших атомов, а также периодичностей, обнаруженных в таблице химических элементов. В этой главе в нашем курсе квантовой механики мы наконец-то подойдем к этому важнейшему достижению и расскажем об объяснении спектра атомов водорода. Кроме того, здесь мы расскажем и о качественном объяснении таинственных свойств химических элементов. Для этого мы подробно изучим поведение электрона в атоме водорода: в первую очередь мы рассчитаем его распределения в пространстве, следуя тем представлениям, которые были развиты в гл. 14.
Для полного описания атома водорода следовало бы учесть движения обеих частиц — как протона, так и электрона. В квантовой механике в этой задаче следуют классической идее об описании движения каждой из частиц по отношению к их центру тяжести. Однако мы не будем этого делать. Мы просто используем приближение, в котором протон считается очень тяжелым, настолько тяжелым, что он как бы закреплен в центре атома.