Мы сделаем еще и другое приближение: забудем, что у электрона имеется спин и что его надлежит описывать законами релятивистской механики. Это потребует внесения небольших поправок в наши выкладки, поскольку мы будем пользоваться нерелятивистским уравнением Шредингера и пренебрежем магнитными эффектами. Небольшие магнитные эффекты появляются из-за того, что протон с точки зрения электрона есть циркулирующий по кругу заряд, который создает магнитное поле. В этом поле энергия электрона будет различна, смотря по тому, направлен ли его спин вверх или вниз по полю. Энергия атома должна немного сдвинуться относительно той величины, которую мы вычислим. Но мы пренебрежем этим слабым сдвигом энергии, т. е. вообразим, что электрон в точности подобен волчку, движущемуся в пространстве по кругу и сохраняющему все время одинаковое направление спина. Поскольку речь будет идти о свободном атоме в пространстве, полный момент количества движения будет сохраняться. В нашем приближении будет считаться, что момент количества движения, вызываемый спином электрона, остается неизменным, так что оставшийся момент количества движения атома (то, что обычно называют «орбитальным» моментом количества движения) тоже не будет меняться. В очень хорошем приближении можно считать, что электрон движется в атоме водорода как частица без спина — его орбитальный момент количества движения постоянен.
В этих приближениях амплитуда того, что электрон будет обнаружен в том или ином месте пространства, может быть представлена как функция положения электрона в пространстве и времени. Обозначим амплитуду того, что электрон будет обнаружен в точке
где
Здесь
Волновая функция ψ должна тогда удовлетворять уравнению
Мы хотим найти состояния с определенной энергией, поэтому попробуем поискать решения, которые бы имели вид
Тогда функция ψ(r) должна быть решением уравнения
где
Раз потенциальная энергия зависит только от радиуса, то это уравнение лучше решать в полярных координатах.
Лапласиан в прямоугольных координатах определялся так:
Вместо этого мы хотим воспользоваться координатами r,θ, φ, изображенными на фиг. 17.1.
Они связаны с
Вас ждут довольно нудные алгебраические выкладки, но в конце концов вы должны будете прийти к тому, что для произвольной функции
Итак, в полярных координатах уравнение, которому должна удовлетворять функция ψ(
§ 2. Сферически симметричные решения
Попробуем сперва отыскать какую-нибудь функцию попроще, чтобы она удовлетворяла уравнению (17.7). Хотя волновая функция ψ в общем случае будет зависеть как от θ и φ, так и от r, можно все же поискать, не бывает ли такого особого случая, когда ψ
Раз ψ не собирается зависеть от θ и φ, то в полном лапласиане останется только один первый член и (17.7) сильно упростится:
Прежде чем заняться решением подобного уравнения, хорошо бы, изменив масштаб, убрать из него все лишние константы вроде е2,
то уравнение (17.8) обратится (после умножения на ρ) в
Эти изменения масштаба означают, что мы измеряем расстояние
Раз произведение ρψ встречается в обеих частях уравнения, то лучше работать с ним, чем с самим ψ. Обозначив
мы получим уравнение, которое выглядит проще: