Читаем Том 3. Квантовая механика полностью

Еще до открытия квантовой механики экспериментальное изучение спектра водорода показало, что уровни энергии описываются формулой (17.24), где ЕR, как это следует из измерений, равно примерно 13,6 эв. Затем Бор придумал модель, которая привела к тому же уравнению (17.24) и предсказала, что ER должно равняться me4/22. Первым большим успехом теории Шредингера явилось то, что она смогла воспроизвести этот результат прямо из основного уравнения движения электрона.

Теперь, когда мы рассчитали наш первый атом, давайте рассмотрим свойства полученного нами решения. Объединим все выделившиеся по дороге факторы и выпишем окончательный вид решения:

(17.25)

где

(17.26)

и

(17.27)

Пока нас интересует главным образом относительная вероятность обнаружить электрон в том или ином месте, можно в качестве а1 выбирать любое число. Возьмем, например, а1=1. (Обычно выбирают а1 так, чтобы волновая функция была «нормирована», т. е. чтобы полная вероятность обнаружить электрон где бы то ни было в атоме была равна единице. Мы в этом сейчас не нуждаемся.)

В низшем энергетическом состоянии n=1 и

(17.28)

Если атом водорода находится в своем основном (наиболее низком энергетическом) состоянии, то амплитуда того, что электрон будет обнаружен в каком-то месте, экспоненциально падает с расстоянием от протона. Вероятнее всего встретить его вплотную близ протона. Характерное расстояние, на котором он встречается, составляет около одного ρ, или одного боровского радиуса rB.

Подстановка n=2 дает следующий более высокий уровень. В волновую функцию этого состояния входят два слагаемых. Она равна

(17.29)

Волновая функция для следующего уровня равна

(17.30)

Эти три волновые функции начерчены на фиг. 17.2.

Фиг. 17.2. Волновые функции трех первых состояний атома водорода с l=0. Масштабы выбраны так, чтобы полные вероятности совпадали.

Общая тенденция уже видна. Все волновые функции при больших ρ, поколебавшись несколько раз, приближаются к нулю. И действительно, число «изгибов» у ψn как раз равно n, или, если угодно, число пересечений оси абсцисс — число нулей — равно n-1.

<p><strong>§ 3. Состояния с угловой зависимостью</strong></p>

Мы нашли, что в состояниях, описываемых волновой функцией ψn(r), амплитуда вероятности обнаружить электрон сферически симметрична; она зависит только от r — расстояния до протона. Момент количества движения таких состояний равен нулю. Теперь займемся состояниями, у которых какой-то момент количества движения имеется.

Можно было бы, конечно, просто исследовать чисто математическую задачу отыскания функций от r, θ и φ, удовлетворяющих дифференциальному уравнению (17.7), добавив только физическое условие, что единственно приемлемые для нас функции — это такие, которые при больших r стремятся к нулю. Так почти всегда и поступают. Но мы попробуем несколько сократить наш путь и воспользоваться тем, что мы уже знаем, именно тем, что нам известно, как амплитуды зависят от пространственных углов.

Атом водорода в том или ином состоянии — это частица с определенным «спином» j — квантовым числом полного момента количества движения. Часть этого спина возникает от собственного спина электрона, другая — от движения электрона. Поскольку каждая из этих частей действует (в очень хорошем приближении) независимо, то мы по-прежнему будем игнорировать спиновую часть и учтем только «орбитальный» момент. Впрочем, это орбитальное движение в точности подобно спину. Скажем, если орбитальное квантовое число есть l, то z-компонента момента количества движения может быть l, l-1, l-2, ..., -l. (Мы, как обычно, измеряем все в единицах .) Кроме того, по-прежнему годятся все наши матрицы поворота и прочие известные свойства. (Начиная с этого места, мы действительно начнем пренебрегать спином электрона; говоря о «моменте количества движения», мы будем иметь в виду только орбитальную его часть.)

Поскольку поле с потенциалом V, в котором движется электрон, зависит только от r, а не от θ и не от φ, то гамильтониан симметричен относительно поворотов. Отсюда следует, что и момент количества движения и все его проекции сохраняются. Это не есть особое свойство кулонова потенциала e2/r; оно справедливо при движении в любом «центральном поле» — поле, зависящем только от r.

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги