Читаем Том 9. Загадка Ферма. Трехвековой вызов математике полностью

АРАБСКАЯ ЗАДАЧА О ЖЕМЧУЖИНАХ

Мальба Тахан (этот псевдоним носил Жулио Сезар де Мелло и Соуза) в своей книге «Человек, который считал», изданной в 1949 году, предлагает очень красивую задачу. «Некий раджа оставил дочерям некоторое число жемчужин и повелел разделить их так: старшей дочери полагалась одна жемчужина и одна седьмая часть оставшихся, второй — две жемчужины и седьмая часть оставшихся, третьей — три жемчужины и одна седьмая часть оставшихся, и так далее для всех остальных дочерей. Младшие дочери обратились к судье, заявив, что этот способ совершенно несправедлив по отношению к ним. Судья славился умением решать задачи и быстро ответил, что просительницы ошибаются и что распределение, предложенное раджой, совершенно справедливо и честно. Судья был прав. После того как были поделены все жемчужины, оказалось, что каждой из дочерей досталось одинаковое число жемчужин. Сколько же было жемчужин и сколько дочерей было у раджи?»

Решение очень простое: жемчужин было 36, дочерей — 6. Первой дочери досталась одна жемчужина и одна седьмая от оставшихся 35, то есть 5. Получается, всего ей полагалось 6 жемчужин, осталось 30. Второй дочери досталось 2 жемчужины и седьмая часть от 28 оставшихся, то есть 4. Она получила 6 жемчужин, осталось 24. Третьей досталось 3 жемчужины и одна седьмая от 21 оставшейся, то есть еще 3, осталось 18. Четвертой досталось 4 из этих 18 и еще седьмая часть от 14, то есть 2. Следовательно, на ее долю также пришлось 6 жемчужин. Пятой дочери досталось 5 из оставшихся двенадцати и одна седьмая от 7 жемчужин, то есть 1, а всего 6. Младшей дочери достались 6 оставшихся жемчужин. Здесь красота задачи сочетается с красотой ее решения. Наследство в 36 драгоценных жемчужин досталось 6 прекрасным девушкам, 6 — совершенное число, а 36 — квадрат совершенного числа.

Графическое представление арабской задачи о жемчужинах

(источник: Мальба Тахан. Человек, который считал).

* * *

«Арифметика» Диофанта

О жизни Диофанта практически ничего не известно. В точности неизвестны даже годы его жизни. Однако до нас дошли несколько дат. С одной стороны, Диофант цитирует Гипсикла, давая определение фигурных чисел, следовательно, его труд был написан позднее 150 года до н. э. С другой стороны, Теон Александрийский, отец Гипатии, приводит в своих трудах одно из определений Диофанта, откуда следует, что «Арифметика» было написана до 350 года н. э. Следовательно, мы можем лишь утверждать, что даты рождения и смерти Диофанта находятся в границах этого периода длиной в 500 лет.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже