При u=0 (8) точно совпадает с (А) и (В). Фактически Максвелл вышел на соотношения (8) путём последовательных обобщений разных модельных ситуаций. Но тем сильнее, как нам кажется, мы должны проникнуться чувством преклонения перед таинственной силой (в смысле мощи интуиции) Великого Ума: Максвелл нашёл функциональное решение уравнений, минуя сами уравнения
11, причём нашёл в самом общем виде, и вдобавок в таком, который подсказал ещё один, иной и по-иному содержательный подход к описанию электромагнитных полей вообще. Уравнения (2), (3) были явно выписаны О. Хевисайдом, и Дж. Дж. Томсон успел вставить их в примечания к 3-му изданию «Трактата» (см. примеч. к п. 598).11
Впрочем, вопрос этот не решается однозначно. В «Трактате» решения (8) и в самом деле написаны без уравнений (2), (3), однако в одной из ранних своих работ [7] Максвелл выписал второе уравнение в явиом виде, а потом почему-то отнес его к производным, а не основным уравнениям. В сборнике [15] имеется очень содержательная статья Н. Т. Маркчева, где дается сводка и сравнение всех разновидностей систем уравнений электродинамики в их исторической последовательности от трех максвелловских до многочисленных (хотя и тоже не всех) после.Конечно, уравнения (1) - (4) и их прообразы в «Трактате» предполагают дифференцируемость всех встречающихся в них полей. Правда, каждому дифференциальному уравнению может быть поставлено в соответствие интегральное уравнение, где это ограничение на поля снимается. Максвелл отводил такому описанию (как уже отмечалось, обладающему большим сродством с полевыми представлениями Фарадея) важную роль в формировании науки, посвящённой топологии векторных (а затем уже и тензорных любого ранга) полей (в отношении полей электромагнитных в этом деле ещё и сейчас есть изрядные недоработки). Но, несмотря на большую общность, в сводном перечне уравнений в «Трактате» интегральная запись не фигурирует, а должные замечания по этому поводу рассеяны по разным разделам текста. Пока ещё Максвелл искал принципиально правильные связи и только после получения доказательств их правильности должен был возникнуть следующий вопрос - установление
S
D
dS
=
4
V
dV
,
где замкнутая поверхность S охватывает весь объём V. Таким образом, можно думать, что Максвелл временно отложил обсуждение вопроса о справедливости общих интегральных уравнений для электромагнитных полей и соответственно об общих условиях скачкообразного или непрерывного перехода разных компонент разных полей через резкие границы раздела сред
12.12
В переписанной Максвеллом для второго издания Предварительной главе (именно в таком виде она фигурирует в данном переводе) вопросу о свойствах разрывных функций уделено специальное внимание. А эта глава - подготовительная, в какой-то мере способствующая раскрытию замыслов автора. Более того, и в электростатике, и в магнитостатике, и в теории стационарных токов постановка краевых задач для потенциалов (и полей) обсуждается на самом строгом уровне, так что гипотеза, по которой Максвелл не упустил из виду, а отложил написание сводных интегральных уравнений и краевых условий, имеет достаточные основания.