Вторая группа уравнений, представляющая материальные связи, фактически не подвергалась никаким изменениям и выглядит вполне по-современному: (5) совпадает с , (L), (G) с точностью до обозначений. При этом Максвелл не ставил целью установление каких-то общих связей, ограничившись простейшими. Чуть позже, в главах XX-XXI, он расширит возможные свойства сред, включив анизотропию (зависимость от направления) и оговорив дисперсию (зависимость от частоты). Важно отметить, что в этом простейшем наборе связей не сделано ни опущений, ни излишеств, а названо ровно столько соотношений, сколько необходимо для замыкания всей системы уравнений. Проблема замыкания и в наше время доставляет кое-какие беспокойства [13], так как для различных способов описания электромагнитных полей требуются разные независимые функции, причём одни из них могут быть вспомогательными («скрытыми от измерений»), а другие физически адекватными измеряемым величинам. Система (1) - (4) содержит 3x5=15 скалярных величин, подлежащих определению; это компоненты векторов E, D, H, B и j
e (заряд e всюду, кроме идеальной электростатики, находится по известному распределению токов je). Попарные подсистемы (2), (3) и (1), (4) налагают каждая только по три (а не четыре!) связи на искомые вектора. В самом деле: из (2) - (3) шесть компонент векторов E и B выражаются через три компоненты A и скаляр , но последние благодаря градиентной инвариантности ещё допускают введение одной скалярной функции f, которой можно распорядиться произвольным образом. Напомним, что градиентной (или калибровочной) инвариантностью называется независимость векторов E и B относительно преобразования потенциаловA'
->
A
-
f
,
'
=
+
1
c
f
t
.
(9)
В результате система (1) - (4), содержащая 15 скалярных величин, фактически производит только шесть независимых ограничений первого порядка. И следовательно, для её замыкания требуется ещё девять связей; как раз именно столько выдают материальные соотношения (5).
Обращение к потенциалам, заметим, оказалось и здесь - при оценке условий замыкания системы уравнений поля - продуктивной необходимостью, так как без максвелловского представления (8) вряд ли возможно было установить инвариантное преобразование (9). В таком явном окончательно оформленном виде оно не встречается в «Трактате», хотя в процессе выхода на уравнения (8) Максвелл неоднократно обсуждает вопросы о неоднозначности введения скалярного и векторных потенциалов порознь.
Осталось обсудить наиболее трудное место, связанное с выводом выражения для механической силы (С). То, что в (С) наряду с членом, описывающим силу, действующую на токи, входит одновременно ещё и член, соответствующий силе, действующей на фиктивные магнитные заряды, с помощью которых можно заменить (с известными оговорками) действие замкнутых токов, не должно приводить к недоразумениям: нужные пояснения сделаны в соответствующих параграфах «Трактата», относящихся к магнитостатике. Но обобщение равноправности такого подхода на произвольно текущие во времени процессы требует всё же некоторых дополнений.
Постольку поскольку магнитные заряды рассматриваются как вспомогательные величины, вводимые ради методических удобств, то не имеет смысла говорить и о плотности механической силы, действующей на них со стороны поля, как о величине физически измеряемой, однако можно утверждать, что суммарная (интегральная) сила на всю систему токов проводимости будет совпадать с силой на эквивалентные им магнитные листы. Причём если в силе, действующей на токи, фигурирует вектор магнитной индукции, то в силе на магнитные заряды «занят» вектор напряжённости магнитного поля H. По существу, это равносильно тому, что, так сказать, «будущий» принцип двойственности, т.е. принцип инвариантности уравнений поля относительно дуальной замены E->H, H->-E,
e->m, je->jm, m->-e, jm->-je, - справедлив также и в своём силовом проявлении. Останется ли такая дуальность справедливой при воздействии на «реальные» магнитные монополи, если таковые всё-таки будут найдены в природе, по-видимому, нельзя разрешить внутри собственно максвелловской электродинамики, а в прогностических теориях неоспариваемой ясности нет вплоть до настоящего времени [14].Однако дуальность заведомо должно быть соблюдена при чисто абстрактном использовании магнитных зарядов, основанном на переопределении токовых источников поля по правилам :
m=-div M, где M - вектор намагничения, отыскиваемый как одно из возможных решений интегрального уравнения видаm
=
1
2c
V
j
e
пр
x
rdV
=
V
M
dV
,
что отвечает двум рецептам введения магнитного момента: для системы токов и для системы зарядов.