Это было ужасно несправедливо. И тогда появился алгоритм, который улучшил ситуацию. Математик Эрл Айзек и его друг инженер Билл Фэйр в 1956 году разработали модель для оценки степени риска невозврата кредита, названную ими FICO. Скоринг FICO основывался на формуле, которую рассчитывали, исходя исключительно из финансовых показателей заемщика: в основном формула опиралась на количество и размер прежде взятых кредитов и историю их выплаты. Результат никак не учитывал расовую принадлежность. Это пошло на пользу банковской индустрии, потому что предсказывало степень риска гораздо точнее и в то же время открывало двери миллионам новых клиентов.
Скоринги FICO, конечно, до сих пор существуют. Их используют бюро кредитных историй, такие как Experian, Transunion
и Equifax, – каждое из них поставляет разные источники информации в модель FICO и высчитывает свои результаты. Эти результаты имеют много положительных и не относящихся к ОМП характеристик. Во-первых, в них есть ясные петли обратной связи. Кредитные компании видят, какие заемщики не возвращают кредиты, и могут связать эти цифры с собственными результатами. Если заемщики с высоким скорингом вдруг начинают не возвращать кредиты чаще, чем предсказывает модель, FICO и кредитные агентства могут скорректировать модель и настроить ее точнее. Все это – вполне разумное использование статистики.Кроме того, кредитный скоринг относительно прозрачен: сайт FICO, например, предлагает простые инструкции по улучшению собственной оценки платежеспособности – сократить долг, делать платежи вовремя, перестать заказывать новые кредитные карты. Столь же важно и то, что индустрия кредитного скоринга регулируется. Если у вас возникают вопросы по поводу оценки вашей платежеспособности, вы имеете законное право затребовать ваш кредитный отчет, который включает в себя вашу ипотечную историю, ваш общий долг и процент доступного кредита, который вы используете. Процесс может быть мучительно медленным, но если вы найдете ошибки, вы сможете настоять на том, чтобы их исправили.
Со времен появления модели Фэйра и Айзека использование скоринга невероятно расширилось. Сегодня нас изучают и обсчитывают всеми возможными способами: специалисты по статистике и математики объединяют разрозненные данные, от почтовых индексов и любимых страниц в интернете до недавних покупок. Многие из их псевдонаучных моделей пытаются предсказать нашу кредитоспособность, выдавая каждому из нас так называемые e-score
. Эти числа, которые мы редко видим, открывают кому-то из нас двери – в то время как перед другими их захлопывают. В отличие от скоринга FICO, который они напоминают, e-scores произвольны, непостижимы, нерегулируемы и зачастую несправедливы. Короче говоря, они представляют собой ОМП.Отличным примером может служить находящаяся в Вирджинии компания Neustar
. Она представляет компаниям сервисы по нахождению клиентов, включая сервис, который помогает управлять звонками, поступающими в колл-центры. В мгновение ока эта технология обрабатывает доступные данные о звонящих и распределяет их по иерархической лестнице. Те, кто оказывается наверху, считаются более потенциально прибыльными – и их быстро соединяют с оператором. Те же, кто оказывается внизу списка, или гораздо дольше висят в режиме ожидания, или перебрасываются в находящийся на аутсорсинге центр с перегруженным трафиком, который обслуживается в основном автоответчиком.Компании, выпускающие кредитные карты, такие как Capital One
, осуществляют подобные моментальные подсчеты, когда кто-то заходит на их сайт. Они часто могут получить доступ к данным о посещаемых потенциальным клиентом сайтах и его покупках, а это дает массу важной информации. Если человек изучает в сети «ягуары» последних моделей, существует большая вероятность, что он богаче, чем тот, который ищет на Carfax.com подержанный «форд торос» 2003 года выпуска. Большинство скоринговых систем также определяют местоположение посетителя сайта. Когда эта информация объединяется с информацией по недвижимости, можно уже делать выводы о финансовом положении. Клиент, который использует компьютер на Бальбоа-Террас в Сан-Франциско, намного перспективнее, чем тот, кто находится по другую сторону залива, в Восточном Окленде.Существование e-scores
не должно вызывать удивления. Мы уже видели модели, в которых загружаются подобные сведения, чтобы бомбардировать нас хищнической рекламой или определить, с какой вероятностью мы можем украсть машину. К лучшему или к худшему, они направили нас в школу (или в тюрьму) и на работу, а затем оптимизировали на рабочем месте. Теперь, когда, возможно, для нас настало время купить дом или машину, для финансовых моделей совершенно естественно использовать тот же кладезь информации, чтобы оценить нас.