Читаем Увлекательно о космосе. Межпланетные путешествия полностью

Другой пример представляет изображенный на рис. 58 двусторонний пистолет. На штативе горизонтально лежит медная трубка, на один конец которой навинчен массивный металлический цилиндр. Другой такой же цилиндр имеет насадку, плотно входящую в трубочку[47]. В трубке сделано отверстие для поджигания с полочкой для пороха. Насыпав на полочку и в трубку немного пороха, вставляют снаряд и кладут пистолет на штатив. Затем при помощи раскаленной проволоки поджигают порох, насыпанный на полочку; порох в трубке взрывается – оба цилиндра с насадками получают ускорения в противоположные стороны и упадут на стол в одинаковых расстояниях от штатива. Действие взрыва одинаково в обе стороны и сообщает обоим цилиндрам одинаковые скорости.

Повторяют опыт с различными массами. Пусть цилиндр, скрепленный с трубочкой, весит 50 г, а вставляющийся в нее – 100 г. После взрыва первый отлетает вдвое дальше второго, хотя давление взрывных газов в обе стороны одинаково.

В каком бы отношении ни находились снаряды, всегда начальные скорости снарядов обратно пропорциональны их массам и, значит, произведения масс снарядов на начальные скорости одинаковы.


Рис. 58. Двусторонний пистолет


Движение снарядов можно определить таким правилом: если до взрыва весь пистолет был в равновесии относительно некоторой оси вращения, то это равновесие сохраняется в каждый момент после взрыва, причем путь обоих снарядов рассматривается как соединяющая их невесомая проволока, а вся система – как рычаг.

В самом деле, горизонтальные расстояния обоих снарядов от оси вращения в каждый момент движения обратно пропорциональны соответствующим массам, а это отвечает условию равновесия рычага. Воображаемая ось всегда проходит поэтому через центр тяжести обеих частей пистолета, так что положение центра тяжести остается неизменным (закон сохранения центра тяжести). Закон этот справедлив и для того случая, когда пистолет перед взрывом не был в покое, а двигался с постоянной скоростью. В этом случае после взрыва его части движутся так, что их общий центр тяжести продолжает свое прежнее движение с той же скоростью (сохранение движения центра тяжести). То же самое будет, конечно, при распаде на несколько частей – например, при движении осколков разорвавшейся гранаты или обломков распавшихся космических тел».

Движение ракеты

Рассмотрим теперь движение ракеты – сначала в среде, свободной от тяжести, а затем в условиях тяжести.

а) Движение ракеты в среде без тяжести. Ввиду фундаментального значения уравнения ракеты для всей теории звездоплавания приводим далее два ее вывода: один – элементарный, для незнакомых с высшей математикой, и другой – более строгий, с применением интегрального исчисления.

Пусть первоначальная масса покоящейся ракеты равна Мt. Заменим непрерывное вытекание газа из трубы рядом последовательных толчков; с каждым толчком вытекает массы Mt ракеты со скоростью с. После первого толчка масса ракеты уменьшается до



после второго толчка остающаяся масса ракеты равна



после третьего толчка



а после k-го —



Скорость υ1, приобретаемую ракетой после первого толчка, легко вычислить, исходя из того, что общее количество движения всех частей ракеты до и после разъединения одинаково, то есть равно нулю:



откуда



Скорость υ2 после второго толчка можно считать равной 2υ1, то есть , а после k-го толчка , откуда



Подставив это выражение для k в формулу



получаем



Преобразуем последнее выражение:



потому что



Выражение



при бесконечно большом n (то есть при переходе от толчков к непрерывному вытеканию газа) равно, как известно, , где е = 2,718. Тогда преобразуемое выражение получает вид:



откуда получаем уравнение ракеты:



Укажем теперь более строгий вывод того же основного уравнения.

Обозначим массу ракеты в некоторый момент через М и предположим, что до горения ракета была неподвижна. Вследствие горения ракета отбрасывает бес конечно малую часть dM своей массы с постоянною скоростью с (по отношению к ракете). При этом остальная часть массы ракеты (M— dM) получает некоторую бесконечно малую прибавку скорости dυ. Сумма количества движения обеих частей ракеты должна быть, по законам механики (см. выше), та же, что и до горения, то есть равняться нулю:


cdM + (M – dM) = 0,


или, по раскрытии скобок,


cdM + Mdυ – dMdυ = 0.


Отбросив член dMdυ как бесконечно малую второго порядка (произведение двух бесконечно малых величин), имеем уравнение:


cdM + Mdυ = 0,


которое представляем в виде



Интегрируя это дифференциальное уравнение, получаем:



или



Мы пришли к уравнению ракеты, или ко второй теореме Циолковского, которую он формулирует так: «В среде без тяжести окончательная скорость (υ) ракеты не зависит от силы и порядка взрывания, а только от количества взрывчатого материала (по отношению к массе ракеты) и от устройства взрывной трубы».

При всех этих вычислениях не учитывалось земное притяжение, влияние которого мы сейчас вкратце рассмотрим.


Перейти на страницу:

Все книги серии Межпланетные путешествия (версии)

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука