Читаем Увлекательно о космосе. Межпланетные путешествия полностью

Вычисляя скорость, с какой тело должно покинуть Землю для удаления в бесконечность, мы принимали, что Земля – единственный центр, притяжение которого тело должно при этом преодолеть. На самом же деле приходится считаться также и с притяжением Солнца. Чтобы учесть это обстоятельство, установим сначала зависимость между скоростью тела на орбите и другими величинами.



Рис. 59. К расчету скорости полета


По второму закону Кеплера площади, описываемые радиусом-вектором в равные времена, равны. Пусть тело (планета) движется вокруг Солнца по эллипсу с полуосями а и b; период обращения Т секунд, секундная скорость υ, радиус-вектор r; тогда для точек перигелия и афелия имеем равенство



где левая часть есть выражение (приближенное) для площади, описываемой радиусом-вектором за 1 с, a πab – площадь эллипса. Имеем:



Пусть теперь тело (звездолет, планета), движущееся вокруг Солнца по круговой орбите радиуса r, должно перейти в точке А своего пути на эллиптическую орбиту с полуосями а и b. Определим, какое для этого необходимо изменение скорости.

Из третьего закона Кеплера следует, что отношение квадрата периода обращения планеты к кубу ее среднего расстояния от Солнца (или большой полуоси) есть величина постоянная; для планет Солнечной системы эта постоянная равна (в единицах системы см – г – с)



откуда



Отсюда имеем скорость у кругового движения около Солнца на расстоянии г.



Обращаясь к эллиптической орбите, имеем прежде всего



Из формулы (5) мы знаем, что скорость υэ движения по эллиптической орбите в точке А



Так как скорость υK движения по круговой орбите (см. (6)



то из сопоставления формул (6) и (7) имеем



По этой формуле и вычисляется скорость, какую необходимо сообщить звездолету, чтобы с круговой орбиты он перешел на эллиптическую или удалился в бесконечность. В последнем случае полагаем большую полуось а эллипса равной бесконечности. Имеем



то есть для удаления звездолета с круговой орбиты в бесконечность необходимо, чтобы круговая скорость его увеличилась в √2 раз. Так, для удаления с земной орбиты (соответствующая скорость 29,6 км/с) в бесконечность нужна скорость


υ =29,6√2 = 41,8,


то есть приращение скорости 41,8 – 29,6 = 12,2 км/с.

Теперь мы можем вычислить скорость, какая должна быть сообщена звездолету для преодоления притяжения Земли и Солнца и, следовательно, для свободного удаления с Земли в бесконечность. Чтобы преодолеть притяжение, нужна начальная скорость 11,2 км/с, то есть работа («живая сила») для каждого килограмма веса звездолета



Чтобы преодолеть солнечное притяжение, нужна работа (υ = 12 200 м/с)



Общая работа для преодоления совокупного притяжения Земли и Солнца равна



Искомая скорость x получается из уравнения:



откуда



Вычислим теперь начальные скорости, необходимые для достижения планет Марса и Венеры. Для Марса



Поэтому из формулы (8) имеем



то есть нужна добавочная скорость 32,6 – 29,6 = 3 км/с.

Искомая скорость для преодоления совокупного притяжения Земли и Солнца вычисляется, как сейчас было показано:



Таким же образом определяем, что для достижения Венеры нужна начальная скорость, не меньшая



Продолжительность перелетов

Перелет на Венеру. Продолжительность этого перелета, при условии минимальной затраты горючего, определится, если будет известен период обращения воображаемой планеты по эллипсу TV (рис. 60). Если S – Солнце, то ST = 150 × 106 км, SV = 108 × 106 км; среднее расстояние воображаемой планеты от Солнца равно ½ (150 + 108) × 106 = 129 × 106 км. По третьему закону Кеплера



где x – продолжительность обращения воображаемой планеты, а 225 суток – продолжительность обращения Венеры;


х = 225√1,7 = 293 сут.


Значит, полет в один конец займет 147 суток.

Перелет на Марс. Время перелета определяется из пропорции:



откуда


у = 519 сут.


Значит, перелет в один конец продлится 259 суток.



Рис. 60. Маршрут перелета с Земли (Т) на Венеру (V)

5. Внеземная станция

Для относящихся сюда расчетов воспользуемся рис. 54. Круг радиуса г пусть изображает земной шар, а эллипс – тот путь, по которому звездолет из точки А земной поверхности (экватора) долетает до круговой орбиты искусственного спутника.

Прежде всего вычислим, каков должен быть радиус круговой орбиты (не изображенной на чертеже) этого спутника, чтобы время его обращения равнялось земным суткам. Применим третий закон Кеплера, зная, что Луна обходит Землю в 27,3 суток на расстоянии 60,3 земного радиуса от центра Земли:



откуда



Итак, внеземная станция должна находиться в расстоянии 6,66 земного радиуса от центра Земли, чтобы период обращения равнялся 24 ч.

Скорость, которую нужно сообщить на Земле звездолету, чтобы он достиг орбиты такого искусственного спутника, есть скорость в точке А эллипса (рис. 59). Вычислим ее по формуле (8):



Здесь υК скорость свободного кругового обращения небесного тела около центра Земли на расстоянии 1 земного радиуса, то есть 7,92 км/с. Следовательно, искомая скорость υА отлета


υа = 7,92 × 1,32 = 10,5 км/с[48].


Перейти на страницу:

Все книги серии Межпланетные путешествия (версии)

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука