Читаем Увлекательно о космосе. Межпланетные путешествия полностью

Подставляя вместо а ускорение тяжести на планете, а вместо R – радиус, получаем величину скорости, с какою тело навсегда покидает планету. Например, для Луны а = 1,62 м/с2, R = 1 740 000 м. Поэтому искомая скорость



На том же можно основать вычисление начальной скорости снаряда или ракеты, которые, покинув Землю, должны долететь до точки равного притяжения между Землей и Луной. Масса Земли в 81 раз больше массы Луны, а так как сила притяжения уменьшается пропорционально квадрату удаления, то притяжения Земли и Луны уравниваются на расстоянии от Земли в 9 раз большем, чем от Луны (тогда притяжение Земли ослабеет в 9 × 9, то есть в 81 раз больше, чем притяжение Луны). Значит, точка равного притяжения лежит в 0,9 расстояния между Землей и Луной; последнее равно 60,3 радиуса R земного шара, так что ядро должно пролететь расстояние D = 0,9 × 60,3R = 54,3R. Обозначив искомую скорость, с какой тело должно покинуть Землю, через υ, имеем для кинетической энергии тела в момент вылета , где m – масса тела. Произведенная же этим телом работа, по законам небесной механики, равна потерянной потенциальной энергии, то есть разности потенциальной энергии Е1 и Е в конечной и начальной точках пути. Поэтому



Здесь Е1 есть потенциальная энергия тела в конечной точке пути по отношению к Земле и к Луне. Первая часть потенциальной энергии равна:



где k — постоянная тяготения; М — масса Земли; m – масса брошенного тела; D — расстояние тела от центра Земли в конечной точке пути.

Вторая доля равна потенциальной энергии (по отношению к Луне):



где k и m имеют прежние значения; Мt – масса Луны; d – расстояние тела от центра Луны в конечной точке пути.

Величина Е есть потенциальная энергия тела (в точке земной поверхности) по отношению к Земле и Луне. Она равна



где R – радиус Земли; L – расстояние от поверхности Земли до центра Луны; а k, m, М и М1 имеют прежние значения. Итак,



или



Подставим:


M1 = 0,012M, D = 54,3R,

L = 59,3R, d = 6R.


Имеем:



или



откуда



Известно, что


g = 9,8 м/с2;

R = 6370 км.


Выполнив вычисления, получаем искомую скорость


υ = 1 107 000 см/с = 11,07 км/с.


Указанным способом можно вычислить скорость и в других подобных случаях. Например, для определения скорости ракеты, взлетающей с Луны по направлению к Земле, имеем уравнение:



Здесь предполагается, конечно, что ракета должна достичь лишь точки равного притяжения, откуда начнется падение на Землю. Зная, что масса М1 Луны равна , где М — масса Земли, имеем (после сокращения на m):



откуда υ = 2,27 км/с – на 100 м меньше, чем скорость, вычисленная без принятия в расчет притяжения Земли. С такой же скоростью должно удариться о лунную почву тело, падающее на Луну из точки равного притяжения, имея Землю позади себя.

Так производится расчет наличной скорости для артиллерийского снаряда, скорости, имеющей максимальное значение на земной поверхности. В случае ракеты скорость на уровне земной поверхности равна нулю и постепенно растет по мере взлета ракеты, пока не прекратится горение заряда. Следовательно, максимальную свою скорость ракета приобретает на некоторой высоте над Землей, где напряжение тяжести, естественно, меньше, чем на уровне моря. Поэтому максимальная скорость, уносящая ракету в межпланетный полет, меньше, чем для пушечного снаряда. Вычислим ее, сделав предпосылку, что ракета летит с ускорением, равным утроенному ускорению земной тяжести.

Обозначим высоту, на которой ракета приобретает максимальную скорость υ, через х. Известно, что υ 2 = 2 × 3g × x = 6gx.


Потенциальная энергия единицы массы ракеты на уровне × равна, согласно предыдущему:



Потенциальная энергия той же единицы массы на высоте 54,37R (в точке равного притяжения) выражается суммой



Потеря потенциальной энергии при перемещении ракеты с уровня x на уровень 54,37R составляет



и должна, мы знаем, равняться кинетической энергии единицы массы ракеты, то есть , или 3gх. Имеем уравнение



откуда x = 0,2616; R = 0,2616 × 6370 = 1666 км.

Теперь из уравнения υ2 = 6gх находим υ = 9750 м/с.

Итак, ракета, отвесно направляющаяся к Луне, достигает наибольшей своей скорости – 9¾ км/с – далеко за пределами земной атмосферы. Число секунд t, в течение которого накапливается эта скорость, определяется из уравнения 9750 = 3 × 9,8t, откуда t = 321 с. Можно вычислить, что под действием земной тяжести ракета потеряет 321 × 7,76 = 2490 м своей секундной скорости (7,76 – средняя величина ускорения тяжести на протяжении 1666 км от земной поверхности). В общем итоге запас энергии, каким надо снабдить ракету для отвесного полета на Луну, должен отвечать скорости 9750 + 2490 = 12 240 м/с.

Сходным образом можно установить, что при отвесном подъеме ракеты с Луны она приобретает максимальную скорость (2300 м/с) на высоте 90 км после 76 с подъема. И обратно: падая от точки равного притяжения на лунную поверхность, ракета должна начать замедление полета на высоте 90 км, чтобы при ускорении (отрицательном) свести свою 2300-метровую скорость к нулю.

Перейти на страницу:

Все книги серии Межпланетные путешествия (версии)

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука