Читаем В лабиринте чисел полностью

Сложенье — вещь отличнаяИ, право же, простая.Его мы вычитаниюНе зря предпочитаем.Но не ищи в сложенииНи радости, ни смысла,Коль складываешь разно-Именованные числа.Различные животныеИ разные предметы,Слагаясь, превращаютсяВ ни то, ни сё, ни это.На свете появляютсяУжасные гибриды,И нам сносить приходитсяУжасные обиды.Всю ночь гиппопотапочкиТопочут по квартире,А утром ноги всовывайВ литые сапогири,Воюй с кенгурубашкою.Что не даётся в руки,И укрощай строптивые,Брыкливые зебрюки.Вокруг тебя беснуются.Теснятся ближе, ближеСвирепые бизонтики,Упрямые ослыжи,Носкильки и чермыльницы.Худые книгалоши,Кусачие пчеластикиИ хрупкая стеклошадь.Нет, не ищи в сложенииНи радости, ни смысла,Коль складываешь разно-Именованные числа!

Читу песенка понравилась, и он запомнил её от слова до слова. Зайчонок, надо надеяться, тоже.

Шифр

Едва история с зайцем благополучно закончилась, как выяснилось, что пропал кролик. После долгих поисков Чит нашёл его в цветнике перед зданием кинотеатра. Кролик безмятежно поедал дорогие декоративные колючки. Испугавшись, что у кролика будет аппендицит, Чит великодушно отказался от своей премии и вернул её на ферму имени Фибоначчи. Ари тоже не сомневалась, что в привычной обстановке кролику будет лучше, но всё-таки не удержалась и сказала довольно ядовито, что, судя по всему, кроликовода из Чита не выйдет. Тот, впрочем, и ухом не повёл: не выйдет — и не надо. Он вовсе писателем хочет стать.

Ари насмешливо прищурилась.

— Думаешь, писать книги легче, чем ухаживать за кроликами? Ничуть не бывало. Даже самое простое предложение «Я хочу стать писателем!» может прозвучать совершенно по-разному — стоит только поменять слова местами!

Чит, конечно, сейчас же пустился проверять. И странное дело: с каждой новой перестановкой фраза и впрямь неуловимо менялась. «Хочу я стать писателем!» звучало мечтательно и задушевно, а «Стать писателем я хочу…» — неуверенно, словно бы за этим последует: «Но вот удастся ли?» «Хочу писателем я стать!» смахивало на строчку из развесёлого детского стихотворения, а «Стать писателем хочу я!» — на признание напыщенного индюка. Выходит, от порядка слов зависит не только характер фразы, но и характер того, кто её произносит?

Тут было над чем поразмыслить, и Чит хотел продолжать, но Ари спросила: уж не собирается ли он перепробовать все 24 перестановки?

— Почём ты знаешь, что их 24? — подозрительно спросил он.

— Потому что в этом предложении четыре слова. А вычислить число перестановок, или, как это называется, факториáл четырёх, — сущие пустяки. Надо перемножить натуральные числа от единицы до четвёрки. Факториал, кстати, обозначается восклицательным знаком. И выглядит это так: 4! = 1 × 2 × 3 × 4 = 24.

— А если в предложении десять слов?

— Тогда надо найти факториал десяти, то есть перемножить все числа от единицы до десяти. Причём получится… — Ари пошевелила губами, — получится три миллиона шестьсот двадцать восемь тысяч восемьсот перестановок.

После этого становиться писателем Читу вдруг расхотелось. Лучше уж быть математиком! Как-никак перемножить числа от единицы до десяти легче, чем отобрать один вариант предложения из трёх с половиной миллионов…

— Математиком так математиком, — согласилась Ари. — Но тогда надо тебе знать, что перестановки, так же как и сочетания, с которыми ты уже знаком, — один из видов соединений, которыми ведает комбинаторика. Только, в отличие от сочетаний, в каждой перестановке участвуют все элементы разом — будь то числа, предметы или слова. И обязательно в новом, ином порядке.

Чит подумал было, что перестановки используются главным образом в писательском деле. Но Ари лишь посмеялась. По её словам, перестановки играют не последнюю роль в теории вероятностей: ведь её с комбинаторикой водой не разольёшь! Но здесь, пожалуй, самое время поговорить о шифре.

— Наконец-то! — ликовал Чит. — Сейчас пойдут шпионские истории.

Но Ари сказала, что шпионских историй он, поди, и так слышал больше, чем следует. Наверняка знает он и о том, что шифр — условный, чаще всего цифровой язык, которым пользуются тогда, когда хотят что-нибудь основательно засекретить. О том, что придумать шифр всё-таки легче, чем расшифровать, можно тоже не упоминать…

— Зачем тогда вообще было приходить на эту станцию, если про шифр я и так всё знаю? — вскипел Чит.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное