В главе 10, где речь шла о гипотезе Пуанкаре, мы говорили о муравье, вселенной которого является поверхность. Как может муравей определить форму своей вселенной, если он не в состоянии отойти в сторонку и посмотреть? В частности, как он сможет отличить сферу от тора? Представленное в той главе решение предусматривало использование замкнутых кривых — топологических автобусных маршрутов. Муравей перемещает эти петли по всей поверхности, выясняет, что происходит, если поставить их одну за другой — концом к началу, и вычисляет алгебраический инвариант пространства, известный как его фундаментальная группа. Слово «инвариант» означает, что топологически эквивалентные пространства имеют одну и ту же фундаментальную группу. Если группы различны, то различны и пространства. Именно этот инвариант привел Пуанкаре к его гипотезе. Однако бедному муравью непросто проверить все возможные в его вселенной маршруты, и это замечание отражает реальные математические тонкости в расчетах фундаментальных групп. Существует и более практичный инвариант, Пуанкаре его тоже исследовал. Процесс перемещения петель по поверхности называется гомотопией; альтернативный вариант называется похоже, но иначе — гомологией.
Я покажу вам простейший, самый конкретный вариант гомологии. Топологи быстро развили этот вариант, оптимизировали и обобщили его, превратив в мощнейшую математическую машину, которая получила название «гомологическая алгебра». Этот простой вариант позволит вам лишь слегка почувствовать, как все это работает, но ведь нам ничего больше и не нужно.
Муравей начинает с того, что обследует свою вселенную и составляет карту. Подобно любому профессиональному топографу, он покрывает вселенную сетью треугольников. Главное при этом — чтобы ни в одном треугольнике не оказалось дырки в поверхности. Проще всего обеспечить это, вставляя каждый треугольник в виде резиновой заплатки, как при ремонте велосипедной камеры. При этом каждый треугольник будет иметь хорошо определенную внутренность, топологически эквивалентную внутренности любого обычного треугольника на плоскости. Топологи называют такую треугольную заплатку топологическим диском, поскольку она эквивалентна кругу. Чтобы убедиться в этом, взгляните на рис. 36 в главе 10, где треугольник постепенно модифицируется в круг. Подобную заплатку невозможно поставить поверх отверстия, потому что отверстие создает туннель, связывающий внутреннюю часть треугольника с его внешней частью. Чтобы перекрыть отверстие, заплатке придется выйти за пределы поверхности, а муравью запрещено делать это.
Итак, муравей провел
В гомотопии мы задаемся вопросом, можно ли сжать данную петлю непрерывно в точку. В гомологии мы задаемся другим вопросом: образует ли данная петля границу топологического диска? Иными словами, можно ли взять одну или несколько треугольных заплаток вместе таким образом, чтобы в сумме получился участок без отверстий с замкнутой границей?
На рис. 47 слева показана часть триангуляционной сети сферы — замкнутая петля и топологический диск, границей которого она является. Применив подходящие методики, можно доказать, что любая петля в триангуляционной сети сферы является такой границей: треугольные заплатки, а в более общем случае топологические диски, — это детекторы отверстий, а интуитивно понятно, что в сфере отверстий нет. Однако в торе отверстие имеется и в самом деле некоторые петли на торе не являются границами таких областей. На рис. 47 справа показана такая петля, проходящая сквозь центральное отверстие. Иными словами: просмотрев список петель и проверив, какие из них являются границами непрерывных областей, муравей может отличить сферическую вселенную от тороидальной.