Читаем Величайшие математические задачи полностью

Это и есть гомология, и этого нам почти достаточно для понимания того, что говорит гипотеза Ходжа. Однако что нам на самом деле нужно, так это близкая к ней концепция когомологии. В 1893 г. Пуанкаре обратил внимание на любопытное совпадение в гомологии любого многообразия: список гомологических групп с начала и с конца читается одинаково. Для многообразия размерности 5, скажем, нулевая гомологическая группа совпадает с пятой, первая — с четвертой, а вторая — с третьей. Он понял, что это не может быть простым совпадением, и объяснил его двойственностью триангуляции, с которой мы уже встречались в главе 4 в связи с картами. Это второй вариант триангуляции, где каждый треугольник заменяется вершиной, каждая сторона, общая для двух треугольников, — ребром, соединяющим две вершины, а каждая точка — треугольником, как на рис. 9 в главе 4. Обратите внимание на то, что измерения появляются здесь в обратном порядке: двумерные треугольники превращаются в нульмерные точки, и наоборот; одномерные ребра остаются одномерными, потому что 1 находится в середине.

Оказывается, полезно различать два списка, хотя инварианты они выдают одни и те же. Когда все это обобщается и облекается в формальные термины, триангуляция исчезает, и дуальная триангуляция тоже теряет смысл. Остаются только две серии топологических инвариантов, именуемых гомологическими и когомологическими группами. Вообще, каждое понятие в гомологии имеет двойника, название которого обычно образуется от названия понятия путем добавления приставки «ко-». Таким образом, вместо циклов мы получаем коциклы, а вместо заявления о том, что два цикла гомологичны, говорим, что два коцикла когомологичны. Классы, о которых идет речь в гипотезе Ходжа, — это классы когомологий, которые представляют собой наборы когомологичных коциклов.

Гомология и когомология не сообщают нам всего, что мы хотели бы знать о форме топологического пространства, — различные пространства могут обладать идентичными гомологией и когомологией, — но дают немало полезной информации, а также обеспечивают системные рамки для его расчета и использования.


Алгебраическое многообразие — будь оно действительным или комплексным, проективным или нет — представляет собой топологическое пространство. Поэтому оно имеет форму. Чтобы выяснить об этой форме что-нибудь полезное, мы рассматриваем многообразие как топологи и вычисляем его гомологическую и когомологическую группы. Но естественными ингредиентами алгебраической геометрии являются не геометрические объекты вроде триангуляционных сеток и циклов, а вещи, которые проще всего описываются алгебраическими уравнениями. Вернитесь немного назад и взгляните еще раз на уравнение поверхности Куммера. Как это соотносится с триангуляцией? В формуле нет ничего, что указывало бы на треугольники.

Может быть, нам нужно начать сначала. Вместо треугольников нам следовало бы использовать естественный строительный материал для многообразий — подмногообразия, определенные дополнительными ограничивающими уравнениями. Теперь нам придется переопределять циклы: вместо набора треугольников с целыми ярлыками мы воспользуемся набором подмногообразий с такими ярлыками, которые лучше всего подойдут в данном случае. По различным причинам — по большей части потому, что, если использовать целые ярлыки, гипотеза Ходжа неверна, — разумным выбором будут рациональные числа. Вопрос Ходжа сводится к следующему: содержит ли новое определение гомологии и когомологии всю ту же информацию, что и топологическое определение? Если гипотеза верна, то алгебраический цикл — не менее острый инструмент топологии, чем когомологический резец. Если она неверна, то алгебраический цикл — всего лишь твердый тупой предмет.

Вот только… прошу прощения, я немного переборщил. Гипотеза утверждает, что достаточно воспользоваться определенным типом алгебраического цикла — того, что обитает в классе Ходжа. Чтобы объяснить это, нам потребуется еще один ингредиент в уже и без того густой смеси: анализ. Одной из важнейших концепций анализа является дифференциальное уравнение, которое представляет собой условие, наложенное на скорости изменения переменных (см. главу 8). Почти вся математическая физика XVIII, XIX и XX вв. моделирует реальность при помощи дифференциальных уравнений. По существу, это верно даже для XXI в. В 1930-е гг. эта идея привела Ходжа к целой группе новых методик. Сегодня все это называется теорией Ходжа. Она естественным образом связана с множеством других мощных методов в объединенной области анализа и топологии.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное