Читаем Величайшие математические задачи полностью

Как увеличивается компьютерное время, необходимое для вычислений, с ростом объема исходных данных? При тестировании на простоту исходные данные — это не само число, а число знаков в нем. Ключевое различие в этом случае проводится между двумя группами алгоритмов — алгоритмами, принадлежащими и не принадлежащими к классу P. Если время работы алгоритма растет как некая фиксированная степень от размера исходных данных, то алгоритм принадлежит к классу P; в противном случае — не принадлежит. Грубо говоря, алгоритмы класса P полезны, тогда как те, что не принадлежат к этому классу, непрактичны. Существует, однако, промежуточная полоса своеобразной ничьей земли, где в ход идут другие соображения. Класс P получил название от понятия «полиномиальное время» — именно так замысловато математики говорят о постоянных степенях. Мы еще вернемся к теме эффективных алгоритмов позже, в главе 11.

По стандартам класса P метод пробного деления работает из рук вон плохо. На школьном уровне, где для проверки предлагаются двух— или трехзначные числа, с ним все в порядке, но при работе со 100-значными числами он абсолютно безнадежен. В общем, пробное деление никак не укладывается в P-класс. Если быть точным, то время выполнения этого алгоритма для любого n-значного числа приблизительно равняется 10n/2, а эта величина растет быстрее, чем любая фиксированная степень n. С таким типом роста, известным как экспоненциальный, по-настоящему трудно иметь дело, это страшный сон любого, кто занимается вычислениями.

До 1980-х гг. у всех известных алгоритмов проверки на простоту, за исключением вероятностных или тех, надежность которых оставалась недоказанной, время вычислений росло экспоненциально. Однако в 1983 г. был найден алгоритм, очень соблазнительно лежащий на ничьей земле вблизи P-территории: это уже упоминавшийся тест Адлемана — Померанса — Румели. Его улучшенная версия, разработанная Генри Коэном и Хендриком Ленстрой, имела время вычисления n в степени log log n, где log — обозначение логарифма. Технически log log n может быть сколь угодно большим, поэтому данный алгоритм не относится к P-классу. Однако это не мешает ему быть пригодным к практическому использованию: если n — гуголплекс, т. е. 1 с 10100 нулями, то log log n равен примерно 230. Старая шутка гласит: «Доказано, что log log n стремится к бесконечности, но никто никогда не видел, как он это делает».

Первый тест на простоту, принадлежащий к P-классу, открыли в 2002 г. Маниндра Агравал и его студенты-дипломники Нирадж Каял и Нитин Саксена. В Примечаниях можно прочитать об этом немного подробнее{2}. Они придумали алгоритм и доказали, что время его выполнения растет пропорционально не более чем n12; очень скоро эта величина была уменьшена до n7,5. Однако, несмотря на то что их алгоритм относится к P-классу и, соответственно, считается «эффективным», его преимущества не проявляются до тех пор, пока n не становится очень и очень большим. По идее этот алгоритм должен побить тест Адлемана — Померанса — Румели, когда число знаков в n приблизится к 101000. Но такое большое число невозможно разместить не только в память компьютера, но и вообще в известной Вселенной. Зато теперь мы точно знаем, что алгоритмы P-класса для проверки простоты числа существуют. Ясно, что поиск лучших алгоритмов в этой категории — дело стоящее. Ленстра и Померанс снизили степень с 7,5 до 6. Если еще некоторые предположения о свойствах простых чисел подтвердятся, степень можно будет снизить до 3, что приблизит нас к практическому применению подобных алгоритмов.

Но самое интересное в алгоритме Агравала — Каяла — Саксены — не результат, а метод. Он прост — по крайней мере для математиков — и отличается новизной. В основе его лежит вариант теоремы Ферма, но, вместо того чтобы работать с числами, команда Агравала использовала многочлены. Многочлен, или полином, — это комбинация степеней переменной x, такая, к примеру, как 5 + 4x − 1. Многочлены можно складывать, вычитать и перемножать, и обычные алгебраические законы на них тоже распространяются. В главе 3 мы поговорим о многочленах подробнее.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное