Читаем Величайшие математические задачи полностью

Решето Эратосфена — не просто историческая диковинка, это и сегодня один из наиболее эффективных методов составления длинных списков простых чисел. А родственные ему методы позволили достичь значительного прогресса в решении самой знаменитой, наверное, из великих нерешенных проблем, имеющих отношение к простым числам: проблемы Гольдбаха. Немецкий математик-любитель Кристиан Гольдбах переписывался со многими знаменитостями своего времени. В 1742 г. в письме к Леонарду Эйлеру он изложил несколько любопытных гипотез, связанных с простыми числами. Позже историки заметили, что Рене Декарт ранее писал примерно то же самое. Первое из утверждений Гольдбаха звучало так: «Всякое целое число, которое можно представить как сумму двух простых, можно записать также как сумму произвольного числа простых, пока все слагаемые не станут единицами». Второе утверждение, добавленное уже на полях письма, гласило: «Всякое целое число больше двух можно представить как сумму трех простых». Сегодняшнее определение простого числа предполагает очевидные исключения из обоих утверждений. Так, 4 не есть сумма трех простых, поскольку наименьшее простое число — 2, и сумма трех простых не может быть меньше 6. Однако во времена Гольдбаха число 1 считалось простым. Разумеется, его утверждения можно переформулировать в соответствии с современными представлениями.

В ответном письме Эйлер припомнил предыдущий разговор с Гольдбахом, когда тот указал, что первое его заявление является следствием более простой, третьей гипотезы: «Всякое четное целое есть сумма двух простых». С учетом общепринятого представления о 1 как о простом числе из этого утверждения прямо следует вторая гипотеза, поскольку любое число можно выразить как n + 1 или n + 2, где n — четное. Если n есть сумма двух простых, то исходное число есть сумма трех простых. Мнение Эйлера о третьем заявлении было однозначным: «Я считаю, что это, несомненно, верная теорема, хотя и не могу ее доказать». Собственно, на сегодняшний день статус этой гипотезы практически не изменился.

Современный подход, при котором 1 — не целое число, разбивает гипотезу Гольдбаха на две части. Вариант для четных чисел (так называемая бинарная проблема Гольдбаха) гласит: любое четное целое число больше двух можно представить в виде суммы двух простых чисел.

А вот вариант для нечетных (известный как тернарная проблема Гольдбаха): любое нечетное число больше 5 можно представить в виде суммы трех простых чисел.

Из бинарной гипотезы автоматически следует тернарная, но не наоборот{4}. Есть смысл рассматривать эти гипотезы по отдельности, поскольку мы до сих пор не знаем точно, верна ли хоть одна из них. Но, похоже, тернарная проблема немного проще, в том смысле что продвинуться в этом направлении удалось заметно дальше.

Бинарную гипотезу Гольдбаха для малых чисел можно подтвердить несложными вычислениями:

4 = 2 + 2;

6 = 3 + 3;

8 = 5 + 3;

10 = 7 + 3 = 5 + 5;

12 = 7 + 5;

14 = 11 + 3 = 7 + 7;

16 = 13 + 3 = 11 + 5;

18 = 13 + 5 = 11 + 7;

20 = 17 + 3 = 13 + 7.

Несложно продолжить ряд примеров вручную, скажем, до 1000 или около того, а можно и дальше, если хватит терпения. К примеру, 1000 = 3 + 997, а 1 000 000 = 17 + 999 983. В 1938 г. Нильс Пиппинг проверил бинарную гипотезу Гольдбаха для всех четных чисел вплоть до 100 000.

При этом выявилась общая тенденция: чем больше само число, тем больше способов представить его в виде суммы простых. Это отвечает здравому смыслу. Если вы возьмете большое четное число и начнете вычитать из него по очереди простые числа, с какой вероятностью все результаты этих действий окажутся составными? Достаточно в списке разностей появиться хотя бы одному простому числу, — и можно считать, что гипотеза для исходного числа подтверждена. Обратившись к статистическим свойствам простых чисел, можно оценить вероятность такого исхода. В 1923 г. аналитики Харольд Харди и Джон Литлвуд проделали такую операцию и вывели правдоподобную, но нестрогую формулу для числа способов представления заданного четного n в виде суммы двух простых чисел: это число приблизительно равно n/[2 (log n)²]. Это число увеличивается с ростом n и, кроме того, хорошо согласуется с числовыми данными. Но даже если математикам удалось бы сделать эту формулу точной, невозможно было бы исключить возможность того, что из нее существуют очень редкие, но все же исключения, так что формула не слишком помогает.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное