Читаем Величайшие математические задачи полностью

Можно сыграть в ту же игру в более широком диапазоне, с более высоким верхним пределом — скажем, до одного миллиона. Формула, известная как теорема о распределении простых чисел (см. главу 9), дает нам возможность подсчитать количество простых чисел в интервале до любого заданного числа x. Эта оценка — x/log x. В интервале до 1 000 000 количество простых оценивается по этой формуле в 72 380. (Точное их число 78 497.) Серый фон занимает около четверти соответствующей таблицы, поэтому в нем примерно n²/4 = 250 млрд выделенных чисел — столько в этом диапазоне возможных сумм двух простых. Это намного больше, чем количество четных чисел в этом же диапазоне (их полмиллиона). Теперь перекрытие должно быть гигантским, а суммы должны возникать в среднем по 500 000 раз каждая. Так что шанс на то, что какое-то четное число окажется пропущено, многократно снижается.

Приложив еще некоторые усилия, мы можем с помощью этого метода оценить вероятность того, что некое четное число в заданном диапазоне не окажется суммой двух простых, исходя из того, что простые числа распределяются случайно с периодичностью, описываемой теоремой о распределении простых чисел, т. е. что в диапазоне до любого заданного x находится около x/log x простых чисел. Именно это сделали Харди и Литлвуд. Они понимали, что такой подход не является строгим, поскольку простые числа определяются достаточно специфически и распределены на самом деле не случайно. Тем не менее разумно ожидать, что реальные результаты не войдут в противоречие с этой вероятностной моделью, поскольку определяющее свойство простых чисел, судя по всему, очень слабо связано с тем, что происходит при сложении двух таких чисел.

Несколько стандартных методов в этой области математики используют примерно такой же подход, но стараются дополнительными средствами сделать свою аргументацию как можно более строгой. В качестве примера можно привести различные варианты решета, построенные на базе решета Эратосфена. Общие теоремы о плотности чисел в сумме двух множеств и возникающие в ней при очень больших множествах пропорции также оказываются весьма полезными инструментами.


В случаях, когда математическая гипотеза в конце концов находит подтверждение, ее история часто развивается по стандартному шаблону. На протяжении некоторого времени разные люди доказывают верность этой гипотезы при каких-либо ограничениях. Каждый такой результат улучшает предыдущий и снимает часть ограничений, но со временем этот путь исчерпывает свои возможности. Наконец появляется новая остроумная идея — и завершает доказательство.

К примеру, гипотеза в теории чисел может утверждать, что каждое положительное целое число может быть представлено каким-то определенным образом с использованием, скажем, шести специфических чисел (простых, квадратов, кубов, каких угодно еще). Здесь ключевыми моментами являются каждое положительное целое и шесть специфических чисел. Первые попытки подступиться к этой проблеме дают слабые результаты, но постепенно, посредством небольших шажков, они улучшаются.

Первым шагом часто является доказательство какого-нибудь утверждения вроде, например, такого: каждое положительное целое число, которое не делится на 3 и 11, за исключением некоторого конечного их количества, может быть представлено через некое гигантское количество — скажем, 10666 — чисел оговоренного вида. Как правило, такая теорема умалчивает о том, сколько и каких существует исключений, так что результат невозможно приложить непосредственно к любому заданному целому числу. Следующий шаг состоит в том, чтобы обозначить границы эффективности, т. е. доказать, что каждое целое число больше 101042 может быть представлено таким образом. Затем снимается ограничение по делимости на 3, а немного позже и на 11. После этого авторы один за другим начинают снимать ограничения: одни уменьшают число 10666, другие 101042, третьи — то и другое одновременно. Типичным улучшением может быть, к примеру, такое: каждое целое число больше 5,8 × 1017 может быть представлено с использованием не более 4298 чисел оговоренного вида.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное