Теперь о том, как выстроить этот список. Сложите числитель и знаменатель каждой дроби и расположите их в порядке возрастания результата сложения, который мы обозначим как 5. (Если у дроби в числителе отрицательное число, просто не обращайте на знак «минус» внимания.) Итак, у дроби 1/2 s равняется 3; у 1/3 s равен 4; у 11/17 — 28 и так далее. У некоторых дробей будут одинаковые значения s, но поскольку наша единственная цель — выстроить длинную упорядоченную последовательность, мы можем ввести какое-нибудь правило, позволяющее однозначно определить, какая дробь должна стоять первой. Правило может быть таким: если несколько дробей дают одно и то же значение в, мы будем располагать их в порядке возрастания знаменателя. Так, у семи дробей: −4/1,1/4,2/3,3/2,4/1,-3/2,-2/3 — s равняется 5. Расположим их в порядке возрастания знаменателя: 4/1, -4/1, 3/2, -3/2, 2/3, -2/3, 1/4. А теперь пронумеруем каждый элемент этого длинного списка дробей так, чтобы каждая дробь попарно соотносилась с одним из ряда целых чисел, и так до бесконечности.
Итак, каждая дробь будет представлена в списке только один раз, и ей будет соответствовать целое число, равное номеру этой дроби в списке. Ни одна дробь не останется неохваченной, и ни одно целое число не окажется без соотнесенной с ним дроби, так что в обоих рядах будет одинаковое количество чисел.
Отлично! Так, может быть, признаем, что все бесконечные множества предметов имеют равное количество составляющих их элементов, даже если кажется, что это маловероятно, как в случае с дробями? Но как тогда могут возникнуть бесконечно большие множества предметов, которые больше, чем бесконечность порядковых номеров?
Немецкий математик Георг Кантор (1845–1918) обнаружил два ряда чисел, которые нельзя взаимно-одназначно соотнести друг с другом, как мы только что проделали с порядковыми номерами и дробями. Он оттолкнулся от посылки, что соотнести их можно, и нашел противоречие. Помните? — если вы придерживаетесь гипотезы, будто все лебеди белые, достаточно найти одного черного, и вся гипотеза пойдет насмарку (см. главу «Есть ли в космосе черные лебеди?»).
В одном из рядов чисел, рассматривавшихся Кантором, были натуральные, или целые, числа — такие же, как использованные нами. Другой совокупностью были так называемые вещественные (или действительные) числа. Вещественные числа эквивалентны точкам на линии от 0 до бесконечности, таким образом, их множество включает в себя целые числа и дроби, но также оно включает и иррациональные числа, которые не могут быть выражены в виде дробей с целыми числителями и знаменателями (см. главу «
Чтобы доказать, что вещественные числа нельзя взаимно-однозначно соотнести с целыми числами, Кантор продемонстрировал: как бы вы ни пытались выстроить вещественные числа в организованную последовательность, как мы проделывали с дробями, всегда есть шанс, что всплывет какое-нибудь вещественное число, которого в этой последовательности нет.
И вот как он это обосновал. Допустим, у нас есть совокупность всех вещественных чисел (которых бесконечное количество), и мы ввели некое правило, позволяющее выстроить их по порядку. Полученная нами в результате последовательность может выглядеть, например, так:
1 | 7,2728654901088… |
2 | 2,0709903829756… |
3 | 18,696243576675… |
4 | 0,8717454638892… |
5 | 3,8342020203020… |
6 | 0,6766682920082… |
7 | 3,1416269873562… |
Какова бы ни была закономерность расположения чисел, она не очевидна, но речь сейчас не об этом. До тех пор, пока мы пребываем в уверенности, что можем соотнести любое вещественное число с привычным и милым нашему сердцу миром целых чисел, мы неизменно будем получать такую вот странноватую последовательность.
Итак, вы можете сунуть мне под нос этот список и похвастаться использованным правилом расположения чисел, благодаря которому любое взятое с потолка вещественное число вплоть до бесконечности обязательно где-нибудь в этом списке да найдется, а значит, бесконечность вещественных чисел равна бесконечности соответствующих им порядковых номеров, то есть целых чисел. Но как бы ни выглядел ваш список, я могу придумать вещественное число, которого там
Для простоты сосредоточимся только на знаках после запятой.
Я могу составить число, чей первый знак после запятой будет отличаться от первого знака в первом числе списка. Второй знак в моем числе не совпадает со вторым знаком второго числа. Третий знак моего числа будет отличаться от третьего знака после запятой в третьем числе списка, и так далее.