В 2007 году произошел трогательный случай, показавший, что необязательно быть математиком, чтобы увлечься цифрами. (Почему трогательный? Поймете чуть позже.) Нью-йоркский пожарный по имени Бобби Беддиа рассказал своему другу, что прошлый день рождения стал для него особенным — он достиг возраста, который сам называл своим «годом рождения». Он имел в виду год, когда его возраст сравнялся с двумя последними цифрами года рождения. Беддиа родился в 1953 году, следовательно, 53 года ему стукнуло в 2006-м. Каждый может вычислить свой собственный «год рождения» — мой был 1984-й[29]
. А вот кого собственный «год рождения» наверняка разочарует, так это тех, кто родился в 1900 или 2000 годах.Как выяснилось, какой бы ни был на дворе год (за исключением 2000-го), на празднование своего «года рождения» имеют право люди двух возрастов с разницей в полвека. Так, в 2006 году наряду с 53-летними ровесниками Беддиа свой «год рождения» отмечали трехлетки, рожденные в 2003 году, которым в 2006-м соответственно стукнуло три года.
Как и многие аспекты теории чисел, «беддианский год», как нарек его один математик, начался с простого наблюдения, но впоследствии породил несколько интересных вопросов, на которые не всегда легко ответить. Вычислить свой беддианский год, исходя из года рождения, проще простого, но как, например, определить, в каком году родились те, чей беддианский год придется, скажем, на 2014-й? Американский математик Барри Сипра решил копнуть еще глубже и попытался вычислить для каждого года, люди какого возрастного диапазона в этот год могут носит звание добеддианцев, то есть еще не достигших своего беддианского года. Сипра пришел к выводу, что в каждом случае речь идет не об одном, а о двух возрастных промежутках. Взяв для рассмотрения 2007 год, Сипра обнаружил, что к этому времени своего беддианского года еще не достигли малыши от 0 до 3 лет, а также возрастная группа постарше — те, чей возраст лежит в границах между 8 и 53 годами. Для всех остальных: тех, кому от 4 до 7 лет, и тех, кому от 53 до 99, — беддианские годы уже миновали. Сложных математических вычислений тут не требуется, однако нужен некий навык умственного жонглирования фактами, а именно — двумя видами чисел, годами и возрастами, и тем обстоятельством, что жизни многих людей «оседлали» рубеж столетий.
Досконально изучив скрытые возможности беддианской теории, Сипра и сам удивился, как столь простое наблюдение смогло подкинуть ученым несколько весьма непростых задачек. К сожалению, Бобби Беддиа так никогда и не узнал о выводах, сделанных математиком из его открытия. За месяц до окончания своего беддианского года он погиб при тушении пожара в пустующем офисном здании неподалеку от того места, где до 11 сентября 2001 года располагались башни-близнецы Всемирного торгового центра.
Вот так совпадение!
Математика Джека Литлвуда[30]
однажды попросили припомнить самое поразительное совпадение в его жизни. В ответ он написал:«Одна девушка шла по лондонской улице Уолтон в гости к своей сестре, Флоренс Роуз Далтон, служившей в доме номер 42. Она миновала дом номер 40 и подошла к дому номер 42, где действительно работала кухарка по имени Флоренс Роуз Далтон (однако она уехала в двухнедельный отпуск, и на это время кухарку подменила ее сестра). Но то был дом номер 42 на площади Овингтон (в конце эта площадь сужается до размеров улицы). А дом 42 по улице Уолтон находился чуть дальше. (Я гостил в доме на площади Овингтон и услышал об этом курьезном происшествии в тот же вечер.)».
Многие из нас попадали в подобные ситуации или хотя бы слышали о них — волей-неволей поверишь, что в таком, казалось бы, случайном стечении обстоятельств кроется некий глубинный смысл. Однако испытываемое нами изумление зачастую связано с тем, что мы услышали только часть истории или ничего не знаем о такой вещи, как теория вероятности.
Обратимся к первому варианту. Допустим, некто звонит вам по телефону и правильно называет имя лошади, которая победит в предстоящем заезде. Проходит неделя, и этот человек снова звонит вам и опять угадывает победителя. Вас так и подмывает принять его предложение и вложить деньги в лошадь, которая победит на следующей неделе. Но что, если я расскажу вам, что еще до первых скачек, где участвовало десять лошадей, этот человек обзвонил сто человек и назвал имя каждой лошади группе из десяти человек? Во второй раз он позвонил уже только тем десятерым, которым в прошлый раз досталась лошадь-победительница, и назвал каждому по одной лошади из второго заезда. Одному человеку из сотни — то есть в данном случае вам — повезло, ему уже дважды правильно указывали победителя. Ничего удивительного, что вам сложно справиться с искушением и не поставить в третий раз все деньги на кон, хотя в действительности шанс «вашей» лошади на победу всего лишь один к десяти.