И вновь колмогоровское определение вероятности, которое мы ввели в самом начале, сильно упростит задачу, избавив нас от пугающих формул, по которым нельзя ничего толком вычислить. Полученная нами формула арбуза работает для любых, сколь угодно сложных форм. В том числе не имеющих границы, подобно атмосфере Земли, уходящей далеко в космическое пространство, становясь все тоньше. Так что нам не нужно знать, каким именно распределениям подчиняются обсуждаемые качества людей, остается лишь предположить, что у них есть среднее значение (а это, как мы увидим, бывает не всегда). Если обозначить как
Рис. 5.3.
Математическая модель арбузаВот она — сила правильно выбранной модели! Толщину корки арбуза мы измеряли линейкой, попадание случайной величины в какой-нибудь диапазон — вероятностью. Какой бы малой ни была вероятность
Для внесения хоть какой-то конкретики можно предположить, что параметры, о которых мы говорим, имеют нормальное распределение. Это вполне разумно для наших целей, ведь мы не говорим о каком-то конкретном наборе характеристик, а, прямо скажем, фантазируем, стараясь сформулировать хоть что-то определенное в столь зыбкой теме. Выбор нормального распределения адекватно отражает степень нашего неведения, и загружаться подробностями до тех пор, пока не видна самая общая картина, рановато. Итак, наш арбуз превратился в размытое туманное пятно, что не мешает нам вычислить долю его «корки». Для «хорошего» в каком-то смысле распределения за норму можно принять значения, не отклоняющиеся от среднего больше чем на величину стандартного отклонения. Для нормального распределения доля значений, выходящих за пределы нормы, имеет
Рис. 5.4.
Вероятности оказаться «ненормальным» для разного числа критериев сравнения и «строгости» определения нормы. Верхний и нижний графики различаются тем, что при определении «нормальности» используют радиус в одно и два стандартных отклонения соответственноЧто ж, выходит, это нормально — быть хоть в чем-то ненормальным. Оценивая людей по десятку параметров, будьте готовы к тому, что полностью заурядными окажутся лишь 2 % общей популяции. Причем как только мы их разыщем, они тут же станут знаменитостями, утратив свою заурядность!
В погоне за Нормой
Нетипичность нормы и ментальные ошибки, к которым может привести попытка усреднения многопараметрических систем, подробно рассматриваются в книге Тодда Роуза «Долой среднее!»[23]
. В частности, в ней приводится история времен начала Второй мировой войны. В попытке разобраться в причинах ошибок пилотов боевых самолетов командование ВВС США предприняло исследование, основной целью которого было уточнить средние характеристики летчиков. От этих параметров зависели конкретные инженерные решения по проектированию эргономики кабины. Считалось, что чем точнее будут известны эти характеристики, тем более эргономичной окажется разработанная на их основе техника. Каково же было удивление молодого антрополога Гилберта Дэниэлса, которому поручили эту работу, когда выяснилось, что из четырех тысяч обмеренных им пилотов не обнаружилось ни одного «среднего», для которого кабина самолета оказалась бы удобной по всем параметрам. Всего использовалось 10 физических характеристик, и Дэниэлс придерживался очень строгого критерия «нормальности»: выходящим за пределы нормы считалось отклонение от среднего, превышающее 30 % от всей выборки. Мы теперь можем вычислить, что для десяти параметров вероятность попасть в нормальные значения по таким критериям составит 0,0006 % — 1 человек на 170 тысяч! В конце концов Дэниэлс пришел к заключению, опубликованному уже после войны: в реальности среднего пилота не существует. Если вы проектируете кабину для него, то она не подойдет ни для кого. Чтобы повысить эффективность солдат, в том числе летчиков, рекомендуются радикальные изменения: окружение должно соответствовать индивидуальным параметрам, а не средним.