Кроме того, Тодд Роуз приводит историю из мирной жизни. Газета Plain Dealer объявила конкурс среди женщин и девушек. Им предлагалось прислать параметры своего тела, и победить должны были те представительницы прекрасного пола, которые окажутся ближе всего к параметрам «типичной женщины» Нормы, увековеченной в статуе из медицинского музея Кливленда (рис. 5.5). Норма родилась вследствие усреднения 15 000 женщин разного возраста и должна была олицетворять идеал, «определенный самой Природой». Всего рассматривалось девять параметров, и из 3864 конкурсанток ни одна не попала в средние значения. По пяти критериям «нормальными» оказались лишь 10 % участниц, что дает нам возможность оценить использованную жюри «толщину корки» в 75 %. С таким суровым подходом надеяться найти хотя бы один «идеал» в пространстве девяти измерений можно, лишь рассмотрев 260 тысяч красавиц. На все человечество таких «идеальных» барышень наберется от силы пара тысяч человек.
Рис. 5.5.
Почти коллинеарные и почти ортогональные векторы в двумерном и трехмерном пространствеДалее Роуз отмечал: Дэниэлс и организаторы конкурса получили одинаковый результат, но сделали совершенно разные выводы. Большинство врачей и ученых того времени не сочли, что Норма представляет неправильный идеал. Наоборот: они решили, что большинство американских женщин нездоровы и не поддерживают нормальную форму. Одним из них был доктор Бруно Гебхард, директор медицинского музея Кливленда. Он сокрушался, что послевоенные женщины малопригодны к службе в армии, и упрекал их, ссылаясь на плохую физическую форму, в том, что они «плохие производители и плохие потребители». Дэниэлс говорил прямо противоположное: о том, что усреднение людей — ловушка, которая многих приводит к просчетам. Ведь почти невозможно найти среднего летчика не в силу каких-то индивидуальных черт его группы, а из-за большого разброса параметров в размерах тела у людей.
Тот самый закон подлости
Один из классических законов подлости, сформулированный в сердцах инженером Эдвардом Мёрфи, гласит:
Сейчас мы можем взглянуть на него не только иронично.
Пусть для выполнения некоторой работы требуется совершить ряд действий, и для каждого из них существует маленькая, но отличная от нуля вероятность неудачи. Какова вероятность того, что все задуманное пройдет без сучка без задоринки? Мы имеем дело с пересечением множества событий, каждое из которых соответствует
Операция пересечения
Отсюда легко получить общую формулу для пересечения произвольного числа событий:
Если события независимы, то мы получаем произведение вероятностей наступления каждого из них:
Но для нас важно, что вероятности, условные или нет, по определению должны быть меньше единицы, а значит, мы вправе использовать закон арбузной корки: чем больше число шагов, тем существеннее роль границ. В нашем случае границами становятся нештатные ситуации. Достаточно дюжины шагов, чтобы средняя вероятность такой ситуации или ошибки в 5 % на одном шаге выросла до вероятности провала всего дела!
Эти наши рассуждения чрезвычайно просты, а закон Мёрфи — скорее эмоции, чем объективность, да и в целом кажется трюизмом. Но все же именно с этого наблюдения в сороковые-пятидесятые годы двадцатого века началась новая большая наука: