Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Для двумерного пространства углы распределяются равномерно, для трехмерного — пропорционально синусоидальной функции. Свойства синуса приводят к тому, что плотность вероятности в нуле для m>2 в точности равна нулю. Это согласуется с нашими рассуждениями о том, что сонаправленные векторы образуют множества нулевой меры. Для всех размерностей выше двух мода распределения приходится на 90°, и доля взаимно ортогональных векторов увеличивается по мере роста числа параметров. Самое же главное наблюдение — сонаправленных векторов (имеющих угол около 0° или 180°) практически не остается при достаточно высокой размерности пространства. Если считать более или менее похожими (сонаправленными, сравнимыми) векторы, имеющие угол менее 30°, то при сравнении по двум критериям похожей на какой-то выделенный вектор окажется треть всех случайных векторов, а при увеличении размерности пространства на единицу доля сравнимых векторов будет уменьшаться практически вдвое. Таким образом, мы приходим к векторной формулировке закона арбузной корки:

В пространствах высокой размерности почти все векторы ортогональны друг другу.

Или эквивалентно: на вкус и цвет товарищей нет.

Этот странный закольцованный мир

По мере повышения размерности распределение углов становится похожим на нормальное. Однако это не оно, несмотря на характерную колоколообразную форму. Нормальное распределение определено для всей вещественной числовой оси, в нашем же случае значение угла зациклено в пределах от 0 до 180°. Мы попали из поля вещественных чисел на кольцо вычетов — математическую структуру, подобную циферблату на часах, дням недели или остаткам от деления. Применяя привычные нам операции в этом кольцевом мире, нужно быть аккуратным, даже выполняя простые расчеты. Скажем, чему равно среднее значение для двух углов: 30 и 350°? Простое сложение даст ответ 190°, тогда как чертеж покажет, что правильным ответом будет 10°. А чему равно среднее значение равномерного распределения на всей окружности? Оно не определено, хотя площадь под кривой распределения конечна. Даже простое вычисление среднего для набора измеренных углов уже становится нетривиальной задачей, требующей перехода на плоскость (декартову или комплексную). Представьте себе, что вы исследуете зависимость числа обращений граждан в полицию от времени суток и получили гистограмму, показанную на рисунке слева (рис. 5.7).


Рис. 5.7. Гистограмма, показывающая распределение числа событий по времени суток, не отражает цикличности времени и не дает возможности правильно найти среднее значение


Попытка вычислить математическое ожидание для самого неспокойного времени с помощью среднего арифметического даст невнятный результат. Он показан на рисунке вертикальной линией. Правильно будет изобразить нашу гистограмму в полярных координатах и там уже найти математическое ожидание, вычислив угловую координату положения центра масс получившейся фигуры. Ее можно визуализировать, построив из центра координат луч, проходящий через центр масс.

Привычные распределения вероятностей с хорошо известными свойствами на кольцах вычетов «зацикливаются» и становятся своеобразными. На рисунке 5.8 показано, как можно построить аналоги некоторых распределений на окружности. Числовая ось как бы наматывается на окружность, при этом каждый слой спирали суммируется, и в результате мы получаем циклический аналог распределения, имеющий единичную площадь.


Рис. 5.8. Построение циклических экспоненциального (слева) и нормального (справа) распределений (показаны тонкой линией). Тут же приведены графики функций плотности для обыкновенных (линейных) распределений (показаны жирными линиями)


Например, циклическое экспоненциальное распределение (рис. 5.9) описывает случайное положительное отклонение от заданного угла с заданным средним значением. С его помощью можно описать время суток, в которое ожидается появление пуассоновского события. Циклическое нормальное распределение допустимо использовать для описания погрешностей в измерении углов. Хотя, если быть точным, они будут подчиняться другому распределению, но об этом чуть позже. Циклические распределения, хоть они и выглядят несколько однообразно, важны при анализе данных на земном шаре, если их дисперсии сравнимы с длиной экватора, а это характерно для широкого класса задач геофизики, климатологии и других наук о Земле.


Рис. 5.9. Циклический аналог распределения Коши


Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги