Любопытно, что при зацикливании свойства распределения могут поменяться радикально. Например, относительная погрешность при измерении нулевой величины описывается распределением Коши. Оно примечательно тем, что ее функция плотности вероятности имеет бесконечную площадь под кривой, так что для этого распределения невозможно вычислить значения среднего и дисперсии: они, в отличие от моды и медианы, для распределения Коши просто не определены. Однако круговой аналог этого распределения ведет себя хорошо, интегрируется и имеет вычислимые значения среднего и дисперсии. Это распределение встречается, например, в физике — при анализе явления дифракции.
Меняет свои свойства при зацикливании и нормальное (гауссовское) распределение. Его циклический аналог уже не будет устойчивым, а суммы случайных величин начнут сходиться не к нему. На окружности эту роль играет распределение фон Мизеса с такой функцией плотности вероятности:
Среднее значение для этого распределения равно μ, а величина 1/
Впрочем, когда дисперсия данных мала и
Сравниваем и ищем с помощью вероятности
Наш опыт работы с вероятностным подходом учит тому, что вероятность можно вычислить, но дать ей однозначную интерпретацию непросто. Еще сложнее измерить эту характеристику явления или процесса. Хорошо, когда можно применить частотную интерпретацию: пронаблюдать достаточно долго за процессом или его моделью и получить оценку распределения управляющих параметров. Но вероятности возникают и по-другому.
В самом начале книги упоминался спам-фильтр, который каждому сообщению в электронной почте ставит в соответствие вероятность того, что это спам — назойливая реклама, рассылаемая безадресно. Это что за вероятность? К какому множеству сообщений она относится? Когда эксперт в интервью утверждает, что вероятность победы того или иного кандидата на государственный пост составляет, скажем, 75 %, сколько раз он собирается проводить выборы, чтобы реально измерить это число и проверить свои выводы? А если это нельзя измерить, как проверять утверждение? Понятно, что в случае с выборами утверждение о вероятности чисто умозрительное и к математике не имеет отношения — число здесь отражает в лучшем случае некую «уверенность по стобалльной шкале». Но бесстрастные автоматы, классифицирующие сообщения в почте, изображения с городских камер или предаварийные состояния сложной техники, выдают результат именно на языке вероятностей.
Эти вопросы заставляют рассуждать о вероятности уже не только как о мере, но и как о характеристике, позволяющей сравнивать трудно сравнимые вещи.
Спам-фильтр сообщает нам о степени благонадежности текста, честно вычисляя условную вероятность того, что сообщение рекламное, исходя и из частотности характерных слов, и, что очень важно, спама среди прочих сообщений (это позволяет избежать ошибок вроде тех, что обсуждались в главе 3
: про тест на содержание алкоголя в крови и истинность научных публикаций). А в результате мы получаем некое число, по которому можем ранжировать сообщения, имея в виду степень «близости» или «похожести» текста на спам. Причем оно не показывает степень близости к какому-то одному «идеальному спаму», его и не существует вовсе; спам — некое очень сложное подпространство в пространстве возможных сообщений.Можно посчитать, какая доля сообщений, принятая фильтром за спам, действительно им оказалась. Однако это измерение покажет некоторую суммарную характеристику эффективности фильтра и его настроек, например выбранного порога близости к спаму, но ничего не скажет о частотной интерпретации результата: «с вероятностью 87 % данное сообщение — спам».