2)
3)
Множество
0=
Понятие метрики позволяет вводить аналог расстояния (или степени близости) в совсем неочевидных случаях, например на бесконечномерном пространстве функций, между строками текста или изображениями; наконец, между распределениями случайных величин. Введение метрики не решает всех проблем, но в отсутствие внятной и корректной метрики легко увязнуть в бесконечном, бурном и бессмысленном споре, который в околокомпьютерной среде известен как «холивар» (от англ. holy war — священная война). Увы, жаркие споры возникают чаще всего уже на этапе выбора метрик, поскольку они сами образуют некое множество, на котором тоже нужно определять отношение порядка «лучше / хуже». Впрочем, можно предложить вполне осмысленный способ рассуждений о сравнимости многомерных объектов, например людей.
В многомерном пространстве параметров каждый объект может быть представлен вектором — набором чисел, определяющих значения критериев, которые его характеризуют. Рассматривая ансамбль векторов (например, человеческое общество), мы увидим, что какие-то из них окажутся сонаправлены или по крайней мере близки по направлениям; вот их-то уже вполне можно сравнивать по длине. В то же время какие-то векторы
В связи с этим может возникнуть любопытный вопрос: а какая доля случайных векторов в пространстве заданной размерности будет сонаправленной, а какая ортогональной? Как много удастся найти единомышленников или хотя бы тех, с кем можно себя сравнить?
В двумерном мире каждому вектору соответствует одномерное пространство коллинеарных (сонаправленных) и одномерное пространство ортогональных векторов. Если мы рассмотрим «почти» сонаправленные и «почти» ортогональные векторы, то они образуют секторы одинаковой меры (неважно, площади или угла) при одинаковом выборе допустимого отклонения. Иначе говоря, похожих и непохожих объектов при рассмотрении двух критериев будет одинаковое количество (под количеством мы опять понимаем меру на множестве этих критериев, рис. 5.5
).В трехмерном мире картина поменяется. Сонаправленные векторы всё так же образуют одномерное пространство, а вот ортогональные уже заполняют плоскость, двумерное пространство. С точки зрения ортогональных векторов мера сонаправленных уже равна нулю, но все же позволим векторам немного отклониться от курса. Фиксируя их длину
В четырехмерном мире ортогональные векторы образуют уже трехмерное пространство, тогда как сонаправленные всё еще лежат в одномерном, и разница в их количестве растет уже пропорционально квадрату отклонения от идеала. Но на этом этапе лучше обратиться к теории вероятностей и выяснить, каковы шансы получить ортогональные или сонаправленные векторы, взяв наугад два вектора из пространства размерности
Здесь Γ(
Рис. 5.6.
Распределения углов случайных векторов в пространствах различных размерностей