Читаем Вероятности и неприятности. Математика повседневной жизни полностью

Даже с идеальным кассиром время стояния в очереди в кассу определяется бестолковыми покупателями.

Важная характеристика очереди — время занятости оператора, или длительность непрерывных периодов времени, в которые он обслуживает клиентов. Обозначим это время B. Периоды занятости перемежаются периодами простоя, когда по какой-то причине клиентов в очереди не оказывается. Клиенты приходят, ждут и уходят, а оператор остается работать, поэтому разумно предположить, что B>W. В действительности ожидаемое, среднее время занятости для M/M/1-очередей равно среднему времени ожидания, то есть B=W. Уже не вполне интуитивно понятный результат, но и это еще не всё: при той же интенсивности труда среднее время обслуживания клиента может стать существенно больше среднего времени работы оператора! Вот это уже кажется парадоксом. Получается, оператор в среднем умудряется работать меньше, чем в среднем обслуживается клиент!

Как мы уже говорили, средние значения надо использовать осторожно. Объяснить этот парадокс и понять, что происходит в очереди, можно, привлекая дисперсию распределения времени обслуживания одного клиента pout(t). Еще в 1930-е австрийскому математику Феликсу Поллачеку удалось в общем виде вычислить отношение W/B для произвольной M/G/1-очереди:

Здесь σ — дисперсия распределения pout(t). В случае M/M/1-очереди σ = 1/μ, и это отношение равно 1. Но может случиться, что при том же значении среднего распределение pout(t) будет иметь большую дисперсию, и тогда W окажется больше B. На рисунке 7.5 показан пример, в котором pin(t) распределено экспоненциально с λ = 30 чел./ч, а pout(t) описывается гамма-распределением, соответствующим интенсивности μ = 34 чел./ч с дисперсией σ = 2/μ.


Рис. 7.5. Распределения для периодов между появлением новых клиентов (сплошная линия — экспоненциальное распределение) и времени обслуживания одного клиента (пунктирная линия — гамма-распределение)


Очередь остается стабильной, поскольку λ < μ и клиенты в среднем обслуживаются быстрее, чем приходят новые. Оператор работает хорошо: большинство клиентов обслуживаются очень быстро; но обратите внимание на долю «трудных» клиентов, которые формируют достаточно толстый хвост распределения. Их мало, но каждый отнимает много времени, и все в очереди вынуждены их ждать. Для примера, приведенного на рисунке, среднее время ожидания оказалось равно 35 минутам, хотя среднее время занятости оператора прежнее (15 минут). Получается, что, не переставая работать, оператор в среднем филонит, пока мы страдаем в очереди от безделья!

Динамика такой очереди отличается от динамики M/M/1. Для нее характерен несимметричный пилообразный рисунок с плавной восходящей линией и резким сбросом. Пока оператор занят «трудным» клиентом, постепенно вырастает длинный хвост, а потом, освободившись, оператор очень быстро с ним справляется (рис. 7.6).


Рис. 7.6. Динамика M/G/1-очереди, где время ожидания клиентов вдвое превосходит время занятости оператора. Горизонтальные темные полосы показывают периоды долгого ожидания очередного «трудного» клиента

Совсем немного о случайных функциях

Здесь мы ненадолго остановимся и обсудим, что же все-таки такое случайный процесс.

Все очереди движутся по-разному. Ступеньки пуассоновского процесса не повторяют друг друга, и мы располагаем только какими-то статистическими свойствами случайных процессов. Но это уже явно не просто случайное число, а кое-что посложнее. С чем же мы имеем дело? Случайный процесс порождает некую последовательность. Его повторение приведет к новой последовательности, скорее всего с другим числом точек. А можно ли обобщить все эти случайные последовательности? Главным свойством случайных величин мы считаем их непостоянство: от раза к разу, от эксперимента к эксперименту каждая из них меняет свое значение, оставаясь при этом одним объектом. Мы смогли однозначно характеризовать его распределением случайной величины — функцией, сопоставляющей каждое значение случайной величины (или диапазон значений) и его вероятность.

Говоря о стохастических последовательностях, мы имеем дело уже не со случайной величиной, а со случайной функцией. Например, для пуассоновского процесса это функция от времени, возвращающая случайную величину — число отсчетов, наблюдаемых за указанное время. Можно ли такую случайную функцию характеризовать так же однозначно и точно, как случайная величина определяется своим распределением?

Построим на одном графике большое число пуассоновских «лесенок» одинаковой интенсивности, а потом для каждого момента времени создадим срез всех этих данных и усредним их, получив одну точку. Вот что мы увидим (рис. 7.7).


Рис. 7.7. Черная сплошная линия — результат усреднения множества реализаций пуассоновского процесса с интенсивностью 1/4


Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги