Читаем Власть роботов. Как подготовиться к неизбежному полностью

Совершенно ясно, что, хотя в миллионах искусственных нейронов, составляющих огромную систему OpenAI, действительно что-то складывается, реальное понимание отсутствует. Система не знает, кто такой единорог и что «четырехрогая» разновидность противоречит смыслу этого слова. GPT-2 страдает от тех же принципиальных ограничений, что пытаются преодолеть команда Дэвида Ферруччи из Elemental Cognition и Рэй Курцвейл в Google.

В мае 2020 года OpenAI выпустила GPT-3, гораздо более мощную систему. Если нейронная сеть GPT-2 включала около 1,5 млрд весов, оптимизировавшихся в процессе обучения, то в GPT-3 их число было увеличено более чем в 100 раз, до 175 млрд. Нейронная сеть GPT-3 была обучена почти на полутерабайте текстов. Это огромный объем, вся англоязычная версия «Википедии» — порядка 6 млн статей — составляет лишь около 0,6 % от него. OpenAI на раннем этапе предоставила избранной группе исследователей ИИ и журналистов доступ к новой системе и объявила, что планирует со временем превратить ее в свой первый коммерческий продукт.

В следующие несколько недель, когда люди начали экспериментировать с GPT-3, соцсети бурлили в изумлении от ее возможностей. Получив подходящие стартовые фрагменты, GPT-3 могла писать убедительные статьи или стихотворения в стиле давно умерших авторов. Она умела даже генерировать псевдодиалоги исторических или вымышленных фигур. Один студент колледжа с помощью этой системы сгенерировал все посты для блога в жанре «помоги себе сам», который взлетел на вершину рейтинга[177]. Все это породило разговоры о том, что система является принципиальным прорывом на пути к машинному интеллекту человеческого уровня.

Однако скоро стало ясно, что самые впечатляющие примеры были выбраны из массы вариантов и что GPT-3, как и ее предшественница, часто выдавала складно написанную бессмыслицу. Обе системы OpenAI по сути представляют собой мощные механизмы прогнозирования. Если дать им последовательность слов, они превосходно предсказывают, каким будет следующее слово. GPT-3 достигла в этом деле беспрецедентного уровня, и, поскольку гигантский поток текстов, на которых система была обучена, несет в себе реальные знания, она действительно часто выдает очень полезный результат. Однако и у GPT-3 нет стабильности, и она нередко выдает чушь и не может справиться с заданиями, которые показались бы простыми любому человеку[178]. По сравнению со своей предшественницей GPT-3, безусловно, может написать гораздо более увлекательный рассказ о единорогах. Однако и она не понимает, что такое единорог.

Что, если OpenAI продолжит просто вбрасывать в эту задачу больше вычислительных ресурсов, создавать все более мощные нейронные сети? Есть ли вероятность появления истинного понимания? Мне это представляется крайне маловероятным, и многие эксперты в области ИИ чрезвычайно критически относятся к упорной вере OpenAI в масштабируемость. Стюарт Рассел, профессор компьютерных наук из Калифорнийского университета в Беркли, соавтор лучшего в мире университетского учебника по искусственному интеллекту, сказал мне, что для создания универсального ИИ потребуются прорывы, «совершенно не связанные с более крупными комплексами данных или более быстрыми машинами»[179].

Тем не менее команда OpenAI не теряет уверенности. Выступая в 2018 году на конференции, посвященной технологиям, ведущий ученый компании Илья Суцкевер сказал: «Мы оценили прогресс в этой области за последние шесть лет. По нашему мнению, существует очень серьезная возможность появления универсального ИИ в ближней перспективе»[180]. Через несколько месяцев на другой конференции генеральный директор OpenAI Сэм Альтман заявил: «Я действительно считаю, что секрет создания [универсального ИИ] в значительной мере кроется в недостаточном масштабе этих систем — их нужно делать все крупнее и крупнее»[181]. Судьба этого подхода еще не определена, но, на мой взгляд, для успеха OpenAI следует расширять поиски подлинных инноваций, а не просто наращивать размер нейронных сетей.

<p>Возрождение символического ИИ и споры вокруг врожденной структуры</p>

Пока исследователи сражаются с трудностями, идеи, проповедуемые сторонниками символического ИИ, переживают своеобразное возрождение. Практически все признают, что задачи, с которыми не слишком успешно пытались справиться символисты, должны быть решены, чтобы искусственный интеллект мог развиваться. За исключением относительно немногочисленных убежденных приверженцев глубокого обучения — в основном связанных с OpenAI — мало кто уверен в том, что простого масштабирования существующих нейронных алгоритмов в сочетании с более быстрыми компьютерами и более значительными объемами данных будет достаточно для возникновения логического мышления и понимания на уровне здравого смысла, без которых невозможен универсальный интеллект.

Перейти на страницу:

Похожие книги

100 великих угроз цивилизации
100 великих угроз цивилизации

Человечество вступило в третье тысячелетие. Что приготовил нам XXI век? С момента возникновения человечество волнуют проблемы безопасности. В процессе развития цивилизации люди смогли ответить на многие опасности природной стихии и общественного развития изменением образа жизни и новыми технологиями. Но сегодня, в начале нового тысячелетия, на очередном высоком витке спирали развития нельзя утверждать, что полностью исчезли старые традиционные виды вызовов и угроз. Более того, возникли новые опасности, которые многократно усилили риски возникновения аварий, катастроф и стихийных бедствий настолько, что проблемы обеспечения безопасности стали на ближайшее будущее приоритетными.О ста наиболее значительных вызовах и угрозах нашей цивилизации рассказывает очередная книга серии.

Анатолий Сергеевич Бернацкий

Публицистика
1941 год. Удар по Украине
1941 год. Удар по Украине

В ходе подготовки к военному противостоянию с гитлеровской Германией советское руководство строило планы обороны исходя из того, что приоритетной целью для врага будет Украина. Непосредственно перед началом боевых действий были предприняты беспрецедентные усилия по повышению уровня боеспособности воинских частей, стоявших на рубежах нашей страны, а также созданы мощные оборонительные сооружения. Тем не менее из-за ряда причин все эти меры должного эффекта не возымели.В чем причина неудач РККА на начальном этапе войны на Украине? Как вермахту удалось добиться столь быстрого и полного успеха на неглавном направлении удара? Были ли сделаны выводы из случившегося? На эти и другие вопросы читатель сможет найти ответ в книге В.А. Рунова «1941 год. Удар по Украине».Книга издается в авторской редакции.В формате PDF A4 сохранен издательский макет книги.

Валентин Александрович Рунов

Военное дело / Публицистика / Документальное
Принцип Дерипаски
Принцип Дерипаски

Перед вами первая системная попытка осмыслить опыт самого масштабного предпринимателя России и на сегодняшний день одного из богатейших людей мира, нашего соотечественника Олега Владимировича Дерипаски. В книге подробно рассмотрены его основные проекты, а также публичная деятельность и антикризисные программы.Дерипаска и экономика страны на данный момент неотделимы друг от друга: в России около десятка моногородов, тотально зависимых от предприятий олигарха, в более чем сорока регионах работают сотни предприятий и компаний, имеющих отношение к двум его системообразующим структурам – «Базовому элементу» и «Русалу». Это уникальный пример роли личности в экономической судьбе страны: такой социальной нагрузки не несет ни один другой бизнесмен в России, да и во всем мире людей с подобным уровнем личного влияния на национальную экономику – единицы. Кто этот человек, от которого зависит благополучие миллионов? РАЗРУШИТЕЛЬ или СОЗИДАТЕЛЬ? Ответ – в книге.Для широкого круга читателей.

Владислав Юрьевич Дорофеев , Татьяна Петровна Костылева

Публицистика / Документальное / Биографии и Мемуары