Читаем Внутреннее устройство Linux полностью

Здесь первая строка говорит команде Upstart о запуске задания при возникновении события startup (это начальное событие, порождаемое командой Upstart). Вторая строка сообщает команде Upstart о том, что задание следует остановить при возникновении события rcS, когда система перейдет в режим одиночного пользователя.

Следующие строки говорят команде Upstart о том, как себя ведет задание mountall:

expect daemon

task

Строфа task говорит команде Upstart о том, что данное задание является задачей, и поэтому в какой-то момент должно быть завершено. Строфа expect чуть сложнее. Она означает, что задание mountall породит демон, который будет действовать независимо от исходного сценария задания. Команде Upstart необходимо знать о том, когда демон прекращает работу, чтобы дать правильный сигнал о завершении задания mountall. Более подробно мы рассмотрим это в пункте «Отслеживание процессов и строфа expect команды Upstart» далее.

Файл mountall.conf продолжается далее несколькими строфами emits, указывающими на события, которые порождает данное задание:

emits virtual-filesystems

emits local-filesystems

emits remote-filesystems

emits all-swaps

emits filesystem

emits mounting

emits mounted

примечание

Как отмечалось в подразделе 6.5.1, присутствующие здесь строки не сообщают о настоящих источниках событий. Чтобы их отыскать, вам придется тщательно просмотреть сценарий задания.

Вам может также встретиться строфа console, определяющая, куда должна направлять вывод команда Upstart:

console output

Если указан параметр output, команда Upstart отправляет вывод задания mountall в системную консоль.

Теперь вы увидите подробности самого задания — в данном случае это строфа script:

script

. /etc/default/rcS

[-f /forcefsck] && force_fsck=" — force-fsck"

["$FSCKFIX" = "yes"] && fsck_fix="-fsck-fix"

# set $LANG so that messages appearing in plymouth are translated

if [-r /etc/default/locale]; then

. /etc/default/locale

export LANG LANGUAGE LC_MESSAGES LC_ALL

fi

exec mountall — daemon $force_fsck $fsck_fix

end script

Это сценарий оболочки (см. главу 11), основная часть которого является подготовительной: происходит настройка языка сообщений, а также определяется необходимость использования утилиты fsck. Реальные действия происходят в команде exec mountall, в нижней части этого сценария. Эта команда монтирует файловые системы и порождает события по окончании данного задания.

Служба: tty1

Служба tty1 намного проще, она контролирует строку приглашения в виртуальной консоли. Полный файл конфигурации tty1.conf выглядит так:

start on stopped rc RUNLEVEL=[2345] and (

not-container or

container CONTAINER=lxc or

container CONTAINER=lxc-libvirt)

stop on runlevel [!2345]

respawn

exec /sbin/getty -8 38400 tty1

Самой сложной частью данного задания является момент его запуска, но пропустите пока строки, содержащие слово container, и сосредоточьтесь на следующем фрагменте:

start on stopped rc RUNLEVEL=[2345]

Эта часть сообщает команде Upstart, чтобы она активизировала данное задание после возникновения события stopped rc, когда отработает и будет завершена задача rc. Чтобы условие стало истинным, задание rc должно также установить для переменной окружения RUNLEVEL значение от 2 до 5 (см. подраздел 6.5.6).

примечание

Другие задания, которые работают с уровнями запуска, не столь требовательны. Вы можете встретить, например, такую запись: start on runlevel [2345]. Единственное существенное различие между двумя приведенными строфами start заключается в выборе момента времени; данный пример активизирует задание, как только будет установлен уровень запуска, а в предыдущем примере ожидается завершение всех процессов System V.

Здесь присутствует конфигурация контейнера, поскольку команда Upstart работает не только напрямую поверх ядра системы Linux с реальными аппаратными средствами, но способна также работать и в виртуальных средах или контейнерах. Некоторые из таких сред не располагают виртуальными консолями, и вам не придется запускать процесс getty для несуществующей консоли.

Остановка задания tty1 происходит просто:

stop on runlevel [!2345]

Строфа stop говорит команде Upstart о том, что задание следует остановить, если уровень запуска выйдет из диапазона значений от 2 до 5 (например, во время выключения системы).

Строфа exec в нижней части является командой, которую следует запустить:

exec /sbin/getty -8 38400 tty1

Эта строфа очень похожа на строфу script, которую вы видели в задании mountall, за исключением того, что для запуска задания tty1 не требуется сложная настройка — оно просто запускается одной строкой. В данном случае мы запускаем команду выдачи строки приглашения getty в устройстве /dev/tty1, которое является первой виртуальной консолью (той, в которой вы окажетесь, когда нажмете в графическом режиме сочетание клавиш Ctrl+Alt+F1).

Строфа respawn дает распоряжение команде Upstart о перезапуске задания tty1, если оно завершается. В данном случае команда Upstart запускает новый процесс getty для новой строки приглашения, когда вы выходите из виртуальной консоли.

Перейти на страницу:

Похожие книги

Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных
C++
C++

С++ – это универсальный язык программирования, задуманный так, чтобы сделать программирование более приятным для серьезного программиста. За исключением второстепенных деталей С++ является надмножеством языка программирования C. Помимо возможностей, которые дает C, С++ предоставляет гибкие и эффективные средства определения новых типов. Используя определения новых типов, точно отвечающих концепциям приложения, программист может разделять разрабатываемую программу на легко поддающиеся контролю части. Такой метод построения программ часто называют абстракцией данных. Информация о типах содержится в некоторых объектах типов, определенных пользователем. Такие объекты просты и надежны в использовании в тех ситуациях, когда их тип нельзя установить на стадии компиляции. Программирование с применением таких объектов часто называют объектно-ориентированным. При правильном использовании этот метод дает более короткие, проще понимаемые и легче контролируемые программы. Ключевым понятием С++ является класс. Класс – это тип, определяемый пользователем. Классы обеспечивают сокрытие данных, гарантированную инициализацию данных, неявное преобразование типов для типов, определенных пользователем, динамическое задание типа, контролируемое пользователем управление памятью и механизмы перегрузки операций. С++ предоставляет гораздо лучшие, чем в C, средства выражения модульности программы и проверки типов. В языке есть также усовершенствования, не связанные непосредственно с классами, включающие в себя символические константы, inline-подстановку функций, параметры функции по умолчанию, перегруженные имена функций, операции управления свободной памятью и ссылочный тип. В С++ сохранены возможности языка C по работе с основными объектами аппаратного обеспечения (биты, байты, слова, адреса и т.п.). Это позволяет весьма эффективно реализовывать типы, определяемые пользователем. С++ и его стандартные библиотеки спроектированы так, чтобы обеспечивать переносимость. Имеющаяся на текущий момент реализация языка будет идти в большинстве систем, поддерживающих C. Из С++ программ можно использовать C библиотеки, и с С++ можно использовать большую часть инструментальных средств, поддерживающих программирование на C. Эта книга предназначена главным образом для того, чтобы помочь серьезным программистам изучить язык и применять его в нетривиальных проектах. В ней дано полное описание С++, много примеров и еще больше фрагментов программ.

Бьёрн Страуструп , Бьярн Страустрап , Мюррей Хилл

Программирование, программы, базы данных / Программирование / Книги по IT