— А может, мне снова поможет наше рассуждение со ртутью? Если трапецоид перенести от абсциссы «один» к абсциссе «два», то ясно, что он растянется вдвое. Следовательно, и вторая пристраиваемая площадочка будет длинней по абсциссе, то есть продолжится от абсциссы «два» до абсциссы «четыре». Третья пристраиваемая площадка будет вдвое длиннее второй и займет место до абсциссы «восемь», а четвертая — вдвое длинней третьей, пятая — вдвое против четвертой и так далее. Значит, если начинать всегда от абсциссы «один» и брать первоначальную площадку, кончающуюся у абсциссы «два», то площадка, вдвое большая по площади, кончится у абсциссы «четыре», вчетверо большая по площади — у абсциссы «шестнадцать», впятеро большая — у абсциссы «тридцать два», и так далее, и так далее. Да ведь это выходит геометрическая прогрессия, раз каждая площадка вдвое длинней по абсциссе. Вот в чем дело! Площади в арифметической прогрессии, конечные абсциссы — в геометрической.
— Тебе ясно, какая у гиперболы связь с логарифмами?
— Да, — ответил Илюша.
— Если последовательно рассматривать абсциссы «два», «четыре», «восемь», «шестнадцать», «тридцать два»… идущие в геометрической прогрессии, и вычислять площади соответствующих гиперболических трапеций, начинающихся от абсциссы
— 370 —
щадь квадрата со стороной, равной единице длины. Не проще ли и тут взять то же самое?
— Тогда как раз и получишь логарифмы, называемые натуральными, неперовыми, или гиперболическими. Ты можешь повторить все наше рассуждение, но только за начальную площадку придется выбрать гиперболическую трапецию, простирающуюся от абсциссы
Теперь скажи мне: что нужно сделать, если ты захочешь получить вдвое большую площадь, то есть равную двум квадратным единицам?
— Здесь опять все пойдет в геометрической прогрессии, — отвечал Илюша. — Если нужно перенести единичную площадь направо, откладывая ее не от
Значит, я дойду до абсциссы
— Значит, — сказал Радикс, — числа, измеряющие величины гиперболических трапеций в обычной единице меры, будут…
— Логарифмами конечных абсцисс при основании
— 371 —
— Вот именно. И заметь, что это рассуждение дает нам в руки способ вычисления этих логарифмов для любых положительных чисел, что далеко не так просто сделать, если искать нужный показатель степени. Потому что вычислять с дробными степенями, как ты сам, вероятно, не раз замечал, не так уж весело. Здесь же можно просто отложить абсциссу, равную числу
— Но это уже будет геометрический способ. А потом как же быть с большими числами?
— На миллиметровой бумаге можно добиться довольно большой точности, а для больших чисел придется уже вычислять. Вспомни, как мы вычисляли площадь, ограниченную дугой параболы. Ты ведь и здесь можешь разбить интересующий тебя участок на большое число частей и вычислить (а не измерять непосредственно) сумму площадей соответствующих тоненьких прямоугольников. Это уже можно сделать с любой степенью точности, то есть той, какая понадобится.
Но есть и более удобные способы вычисления логарифмов.
— А какие же логарифмы применяются на самом деле,— спросил Илюша, — натуральные или какие-нибудь другие?
— Натуральные обладают целым рядом преимуществ перед остальными, и в математическом анализе применяются почти исключительно они. Но в практических вычислениях удобнее иметь дело с десятичными, для которых и составлены таблицы.