А если надо перейти от десятичных к натуральным или наоборот, то пользуются модулем перехода, о котором мы уже говорили. Чтобы получить десятичный логарифм, надо натуральный умножить на
— 372 —
Это число называется модулем десятичных логарифмов.
— А нельзя ли десятичные логарифмы получить тоже как площади гиперболических трапеций?
— Конечно, можно. Перемена основания соответствует, как мы уже видели, просто перемене способа измерения площадей. Если ты в качестве единицы для измерения площадей выберешь основную гиперболическую трапецию, простирающуюся от
— А почему обычные логарифмы — десятичные, а не какие-нибудь другие?
— Просто потому, что мы пользуемся десятеричной системой счисления. Древний халдей, вероятно, выбрал бы для основания не десять, а свое любимое число шестьдесят, если бы он додумался до логарифмов. А в десятеричной системе счисления сразу известны логарифмы чисел 10, 100, 1 000, 10 000 и т. д. Они равны 1, 2, 3, 4… Поэтому, умножая какое-нибудь число на десять, сто и так далее, сразу можно сказать, что десятичный логарифм этого числа увеличится на единицу, на два и прочее, а при делении будет наоборот. Это очень облегчает пользование таблицами.
Илюша помолчал минутку.
— А это что такое? — спросил доктор У. У. Уникурсальян.
— Вот что, — произнес он наконец, — мне кажется, что теперь я могу разобраться, почему при помощи логарифмов умножение заменяется сложением. Если взять гиперболическую площадку от
— 373 —
кажется, все ясно. Значит, одно из конических сечений имеет самое тесное отношение к прогрессиям. Как все это связано!
— Вот эта связь различных разделов математики друг с другом и есть величайшая драгоценность нашей науки[27]
.— Как интересно! — воскликнул Илюша. — А скажи, пожалуйста, когда были открыты логарифмы?
— В начале семнадцатого века Джоном Непером, шотландцем.
— А-а! — сказал Илюша. — Вот в чем дело-то! Вот при чем тут шотландский сыр!
— Конечно! Про этого Непера говорили, что он увеличил вдвое продолжительность жизни астронома, потому что с логарифмами можно насчитать вдвое больше, чем без них. Разумеется, нетрудно догадаться, что все, что мы проделали с неделимыми, можно отлично перевести и на современный язык теории пределов, стоит только вместо суммы «неделимых полосок» рассматривать предел суммы бесконечно утончающихся вписанных или описанных прямоугольничков, как мы делали уже в Схолии Пятнадцатой.
— А теперь расскажи еще про гиперболу. Греки определили параболу как геометрическое место. А гиперболу нельзя так определить?
— Можно. И гиперболу и эллипс. В эллипсе есть две весьма замечательные точки. Чтобы показать их тебе, я впишу в конус два соприкасающихся шара: один поближе к вершине конуса, другой подальше. Второй шар будет побольше, первый поменьше. Теперь я просуну между ними секущую плоскость (которая, разумеется, не имеет толщины). Оба шара будут ее касаться в одной точке, если плоскость будет лежать параллельно основанию конуса. И эта точка касания будет центром той окружности, которая будет сечением конуса этой самой плоскостью. Теперь я начну секущую плоскость наклонять.
Точки
Кто сам докажет, того переводим без экзаменов в следующую схолию.
Так как шары ее крепко держат, то мы попросим первый шар, который поменьше, потесниться и сделаться немного меньше.{14}
Когда таким образом нам удастся повернуть секущую плоскость под некоторым углом к основанию конуса, то сечение конуса станет уже не кругом, а эллипсом, а два шара будут касаться секущей плоскости (а тем самым и плоскости эллипса) в двух точках, а не в одной. Эти две точки называются— 374 —